Massendefekt

Dieser Artikel befasst sich mit dem Massendefekt genannten Masseunterschied in der Kernphysik. Für die gleichnamige Musikgruppe siehe Massendefekt (Band).

Als Massendefekt (auch Massenverlust) bezeichnet man in der Kernphysik den Unterschied zwischen der Summe der Massen aller Nukleonen (Protonen und Neutronen), aus denen ein Atomkern besteht, und der tatsächlich gemessenen (stets kleineren) Masse des Atomkerns.

Auch die Summe von Kernmasse und der Massen der Elektronen in der Atomhülle in einem neutralen Atom ist größer als die gemessene Atommasse. Dieser Massendefekt ist jedoch wesentlich geringer als der Massendefekt beim Zusammenfügen von Protonen und Neutronen und wird meist vernachlässigt.

Der Massendefekt widerlegt die Annahme der klassischen Physik, die Masse bleibe bei allen Vorgängen erhalten.

Massendefekt und Bindungsenergie

Der Massendefekt lässt sich mit der Erkenntnis der relativistischen Physik erklären, dass man an der Masse die Energie des ruhenden Teilchens ablesen kann: die Bindungsenergie der Nukleonen vermindert die Summe der Ruheenergien der einzelnen Kernbausteine. Somit ist die beim Bau eines Atoms freigesetzte Bindungsenergie der Nukleonen nach der Beziehung $ E_\mathrm{B} = \Delta m c^2 $ gleich dem Massendefekt. Je größer der Massendefekt ist, desto stabiler ist der Atomkern, da mehr Energie zu seiner Zerlegung aufgewendet werden muss.

Massendefekt bei verschiedenen Massenzahlen

Der gesamte Massendefekt steigt mit der Anzahl der beteiligten Nukleonen. Wenn man den durchschnittlichen Massendefekt pro Nukleon bestimmt (z. B. durch Messungen mittels Massenspektrometern) und daraus die Bindungsenergie (in der Einheit MeV) berechnet, ergibt sich der im Bild gezeigte Zusammenhang mit der Massenzahl, d. h. der Zahl der Nukleonen. Diesen Quotienten aus Massendefekt und Nukleonenzahl nennt man auch Packungsanteil.[1]

Kernbindungsenergie (pro Kernbaustein) in Abhängigkeit von der Kernmasse

Die höchsten Massendefekte pro Nukleon finden sich bei Nukliden, deren Atomkern aus ungefähr 60 Nukleonen besteht. Eine ganze Reihe von Nukliden haben hier fast identische Werte. Das Nuklid mit dem höchsten Massendefekt ist Nickel-62, gefolgt von den Eisenisotopen Fe-58 und Fe-56.[2]

Energiegewinnung aus Kernreaktionen

Wenn leichte Nuklide (in der Abbildung links vom Massendefekt-Maximum gelegen) durch Kernfusion (Kernverschmelzung) eine höhere Nukleonenzahl erreichen, dann erhöht sich der Massendefekt pro Nukleon; diese nun zusätzlich fehlende Masse wird in Energie umgewandelt, die genutzt werden kann. Umgekehrt setzen schwere Kerne (rechts vom Massendefekt-Maximum gelegen) Energie frei, wenn sie durch Kernspaltung in zwei Kerne mittlerer Masse zerlegt werden. Eine Energie freisetzende Umwandlung erfolgt somit immer „in Richtung zum Maximum des Massendefekts“, also mit ansteigender Kurve.

Die in der Energietechnologie wichtigen Fusionsreaktionen nutzen allerdings nicht die Region der höchsten Massendefekte bei Massenzahlen um 60, sondern das in der Abbildung sichtbare starke lokale Maximum beim Helium-Isotop 4He aus, denn die relative Massendefekt-Zunahme von den Reaktionspartnern Deuterium und Tritium zum Helium ist besonders groß, und zugleich ist die Coulombbarriere, die für die Vereinigung der Kerne überwunden werden muss, relativ niedrig.

Berechnung

Der Massendefekt eines Atomkerns ergibt sich aus der Differenz der Masse seiner Protonen (Ordnungszahl = Kernladungszahl Z) und Neutronen (Neutronenanzahl N) und seiner tatsächlichen Kernmasse mK:

$ \Delta m = Z \, m_\mathrm{p} + N \, m_\mathrm{N} - m_\mathrm{K} \,. $

In guter Näherung kann $ \Delta m $ auf halbempirischer Basis mittels der Bethe-Weizsäcker-Formel auf der Grundlage des Tröpfchenmodells des Atomkerns berechnet werden.

In der Praxis wird der Massendefekt nicht für den isolierten Atomkern, sondern für das gesamte, ungeladene Atom des jeweiligen Nuklids angegeben. Dies hat experimentelle Gründe: Vollständig ionisierte, also „nackte“ Atomkerne lassen sich nur schwer gewinnen und handhaben, weil sie mit ihrer hohen positiven elektrischen Ladung sofort Elektronen aus der Umgebung einfangen. Die genaue Messung ihrer Masse wäre daher kaum möglich, besonders bei schweren Elementen (Elementen hoher Ordnungszahl) mit ihrer entsprechend besonders hohen Ladung.

In der Literatur finden sich häufig Rechenbeispiele für vergleichsweise einfache Kerne, in denen der Kern ohne Elektronenhülle betrachtet wird. In Tabellen wird jedoch in der Regel der Massendefekt bezogen auf das ganze neutrale Atom angegeben.

Beispiele

Die Masse eines Protons beträgt mp = 1,007276 Atomare Masseneinheiten (u), die eines Neutrons mn = 1,008665 u. Der Kern von Helium 4He besteht aus zwei Protonen und zwei Neutronen; die Summe aus deren Ruhemassen wäre 4,03188 u, die Ruhemasse des 4He-Kerns beträgt jedoch nur 4,00151 u. Der Massendefekt beträgt hier also 0,03037 u beziehungsweise 0,76 % der Ausgangsmasse.

Bei der Spaltung von 235Uran in 142Barium und 92Krypton

$ {}^{235}_{\ 92} \mathrm {U} + {}^{1}_{0}\mathrm {n} \to {}^{142}_{\ 56} \mathrm {Ba} + {}^{92}_{36} \mathrm {Kr} + 2\ {}^{1}_{0} \mathrm {n} $

beträgt die Masse des Urans und des die Spaltung auslösenden Neutrons zusammen 236,053 u, die entstehenden Spaltprodukte und Neutronen weisen jedoch eine Masse von lediglich 235,860 u auf[3]. Der Massendefekt beträgt in diesem Beispiel somit 0,193 u beziehungsweise 0,08 % der Ausgangsmasse.

Einzelnachweise

  1. Wolfgang Demtröder: Experimentalphysik 4. Springer, Berlin Heidelberg 2009, ISBN 978-3-642-01597-7, S. 26
  2. M. P. Fewell: The atomic nuclide with the highest mean binding energy. In: American Journal of Physics. 63, Nr. 7, 1995, S. 653–658. doi:10.1119/1.17828.
  3. http://atom.kaeri.re.kr/ton/nuc6.html

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.