Kugelwelle

Die Kugelwelle ist eine sich regelmäßig sowie gleichmäßig von einer Quelle in alle Raumrichtungen in streng konzentrischen Wellenfronten ausbreitende Welle (z. B.: Schallwelle, Lichtwelle).

Zweidimensionale Darstellung einer Kugelwelle

Solch eine kugelförmige Wellenfront entsteht jedoch nur unter der Annahme stark idealisierter Voraussetzungen, z. B. bei einem Kugelstrahler nullter Ordnung, also einer „atmenden“ Kugel, als Quelle, bei Abstrahlung in ein homogenes isotropes Medium (hier am Beispiel von Schallwellen in Luft behandelt) bei ungestörter Ausbreitung. Ist der Ausgangsort einer Welle (Sender) als punktförmig anzusehen, so breitet sich die Welle in einem homogenen, isotropen Medium als Kugelwelle aus, d. h. die Flächen gleicher Phasen sind konzentrisch zum Sender gelegene Kugelflächen, die gleiche Abstände voneinander haben. Wie man erkennt, verteilt sich bei der Schallkugelwelle die Energiedichte auf immer größere Flächen, d. h. sie nimmt mit 1/r2 ab. Daraus ergibt sich eine Abnahme der Wellenamplitude oder des Schalldrucks mit 1/r. Diese mit dem reziproken Abstandsquadrat gegebene Abnahme der Energiedichte einer Kugelwelle wird auch als das quadratische Energie-Abstandsgesetz bezeichnet. Anders ausgedrückt könnte man auch sagen, dass sich durch die Vervierfachung der Fläche bei Verdopplung der Entfernung zum Sender die Leistungsdichte auf ein energetisches Viertel (-6 dB) und somit der Schalldruckpegel ebenso um 6 dB reduziert.

Akustische Kugelwelle (Schall)

Für die Abnahme von Schalldruck p und Schallschnelle v gilt im Fernfeld, wenn die Entfernung vom Messpunkt zum Sender mit r bezeichnet wird:

$ p \sim \frac{1}{r} \quad \Leftrightarrow \quad \frac{p_2} {p_1} = \frac{r_1}{r_2} $
$ v \sim \frac{1}{r} \quad \Leftrightarrow \quad \frac{v_2} {v_1} = \frac{r_1}{r_2} $

Alle Schallfeldgrößen nehmen im Fernfeld nach dem 6-dB-Abstandsgesetz mit $ \tfrac{1}{r} $ ab. Das heißt, die Größenwerte halbieren sich je Entfernungsverdopplung. Die Schallintensität nimmt als Schallenergiegröße proportional mit dem Quadrat der Entfernung vom Sender ab, weil die von der Schallquelle ständig emittierte Schallleistung als Schallintensität eine sich ständig vergrößernde Fläche durchsetzt, die in dem Maße abfällt, wie die Fläche anwächst. I ~ 1/A ~ 1/r2.

$ I \sim \frac{1}{r^2} \quad \mathrm{bzw.} \quad I \sim \frac{I_0}{r^2} $

Die insgesamt abgestrahlte Schallleistung bleibt im theoretischen Modell auf einer Hüllfläche um die Kugelschallquelle konstant, das heißt, sie ist von der Senderentfernung r unabhängig.

$ P_\mathrm{ak} = I \cdot A = \text{const}. $
$ A = 4 \cdot \pi \cdot r^2 \sim {r^2} \, $
$ I = \frac{P_\mathrm{ak}}{A} \sim \frac{1}{r^2} $

Dabei bedeuten:

  • Schallleistung $ P_\mathrm{ak} $
  • Schallintensität I
  • Abstand vom Messpunkt zum Sender r
  • Fläche A.

Mit wachsender Entfernung vom Sender werden die Kugelwellen ebenen Wellenfronten immer ähnlicher. Charakteristisch für Kugelwellen ist, dass alle Schallfeldgrößen auf konzentrischen Schalen um den Erregungsmittelpunkt des Senders konstant sind, während diese dagegen bei ebenen Wellen in Ebenen konstant sind, die senkrecht zur Ausbreitungsrichtung der Wellenbewegung stehen.

Man unterscheidet ähnlich wie bei elektromagnetischen Kugelwellen auch bei Kugelschallwellen zwischen einem Nahfeld (r < 2 · λ) und einem Fernfeld (r > 2 · λ). Die Schallschnelle v und die Schallauslenkung ξ nehmen im Nahfeld mit $ \tfrac{1}{r^2} $ und im Fernfeld mit $ \tfrac{1}{r} $ ab. Der Schallwechseldruck p nimmt dagegen im Nah- und im Fernfeld mit $ \tfrac{1}{r} $ ab. Im Kugelschallfeld besteht die Schnelle aus einem Wirkanteil –v und einem Blindanteil 'v. Der 1/r2-Abfall der Schnelle im Nahfeld wird im Wesentlichen durch die Blindschnelle 'v verursacht. Bei der Schallabstrahlung im Nahfeld tritt nämlich neben der eigentlichen (Wirk-)Schallenergie auch noch eine Blindenergie-Komponente auf, die durch die so genannte mitschwingende Mediummasse zustande kommt. Darunter versteht man diejenige Luftmasse, die in unmittelbarer Nähe der Schallquelle "wattlos" hin- und hergeschoben wird, ohne dabei komprimiert zu werden. Infolge dieser nicht zu vernachlässigenden Massewirkung der mitschwingenden Luft tritt zwischen Schallschnelle und Schalldruck eine Phasenverschiebung auf, die für die Größe der Blindenergie kennzeichnend ist. Siehe hierzu den Weblink zur Schallschnelle. Im ebenen Schallfeld besteht die Schnelle nur noch aus ihrem Wirkanteil. Die Schallschnelle ist nicht zu verwechseln mit der Schallgeschwindigkeit. Die Schallgeschwindigkeit gibt die Geschwindigkeit c an, mit der sich die Schallenergie ausbreitet, während die Schallschnelle v lediglich die Wechselgeschwindigkeit der Teilchen darstellt.

Siehe auch

Nahfeld und Fernfeld | Ebene Welle | Abstandsgesetz

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.