Kleinstes gemeinsames Vielfaches
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Zahlentheoretische Funktion
Das kleinste gemeinsame Vielfache (kgV) ist ein mathematischer Begriff. Sein Pendant ist der größte gemeinsame Teiler (ggT). Beide spielen unter anderem in der Bruchrechnung und der Zahlentheorie eine Rolle.
Das kleinste gemeinsame Vielfache zweier ganzer Zahlen $ m $ und $ n $ ist die kleinste natürliche Zahl, die sowohl Vielfaches von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m als auch Vielfaches von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n ist.
Die englische Bezeichnung lcm (least common multiple) für das kgV ist in mathematischen Texten ebenfalls verbreitet.
Beispiel zur kgV-Berechnung
- Die Vielfachen von 12 sind: 12, 24, 36, 48, 60, 72, 84, …
- Die Vielfachen von 18 sind: 18, 36, 54, 72, 90, 108, …
- Die gemeinsamen Vielfachen von 12 und 18 sind also 36, 72, 108, …
- und das kleinste von diesen ist 36; in Zeichen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(12, 18) = 36
Berechnung über die Primfaktorzerlegung
GgT und kgV kann man über die Primfaktorzerlegung der beiden gegebenen Zahlen bestimmen. Beispiel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 3.528 = 2^{\color{Red}3} \cdot 3^{\color{Red}2} \cdot 7^{\color{Red}2}
- $ 3.780=2^{\color {OliveGreen}2}\cdot 3^{\color {OliveGreen}3}\cdot 5^{\color {OliveGreen}1}\cdot 7^{\color {OliveGreen}1} $
Für das kgV nimmt man die Primfaktoren, die in mindestens einer der beiden Zerlegungen vorkommen, und als zugehörigen Exponenten den jeweils größeren der Ausgangsexponenten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(3.528,3.780) = 2^{\color{Red}3} \cdot 3^{\color{OliveGreen}3} \cdot 5^{\color{OliveGreen}1} \cdot 7^{\color{Red}2} = 52.920
Das kgV von mehreren Zahlen
Man verwendet alle Primfaktoren, die in irgendeiner der Zahlen vorkommen, mit der jeweils höchsten vorkommenden Potenz, zum Beispiel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 144 = 2^{\color{Red}4} \cdot 3^{\color{Red}2}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 160= 2^{\color{OliveGreen}5} \cdot 5^{\color{OliveGreen}1}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 175= 5^{\color{Blue}2} \cdot 7^{\color{Blue}1},
also:
- $ \operatorname {kgV} (144,160,175)=2^{\color {OliveGreen}5}\cdot 3^{\color {Red}2}\cdot 5^{\color {Blue}2}\cdot 7^{\color {Blue}1}=50.400. $
Man könnte auch zunächst Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(144,160) = 1.440 berechnen und danach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(1.440,175) = 50.400, denn als eine zweistellige Verknüpfung auf den natürlichen Zahlen ist das kgV assoziativ:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(m,\,\operatorname{kgV}(n,p)) = \operatorname{kgV}(\operatorname{kgV}(m,n),\,p).
Dies rechtfertigt die Schreibweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(m,n,p)
Anwendungen
Bruchrechnung
Angenommen, wir möchten die Brüche $ {\tfrac {17}{21}} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{44}{35} addieren. Dazu müssen diese durch Erweitern auf einen gemeinsamen Nenner gebracht werden. Man könnte natürlich einfach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 21 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 35 multiplizieren, was Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 735 ergibt. Der kleinstmögliche gemeinsame Nenner (der sog. Hauptnenner) ist aber Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(21,35) = 105 . Die beiden Brüche werden auf diesen Nenner erweitert und dann addiert:
- $ {\frac {17}{21}}+{\frac {44}{35}}={\frac {{\color {Red}5}\cdot 17}{{\color {Red}5}\cdot 21}}+{\frac {{\color {Red}3}\cdot 44}{{\color {Red}3}\cdot 35}}={\frac {85}{105}}+{\frac {132}{105}}={\frac {217}{105}} $
Anwendungen in weiteren algebraischen Strukturen
Das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV} lässt sich nicht nur für natürliche (und ganze) Zahlen definieren. Man kann es z. B. auch für Polynome bilden. Statt der Primfaktorzerlegung nimmt man hier die Zerlegung in irreduzible Faktoren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} f(x) &= x^2 + 2xy + y^2 = (x + y)^2\\ g(x) &= x^2 - y^2 = (x + y) (x - y) \end{align}
Dann ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV}(f, g) = (x + y)^2 (x - y) .
Die Division mit Rest, die auch für Polynome existiert, erleichtert das Auffinden von gemeinsamen Teilern.
Analog zum ggT ist das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{kgV} definiert: Ein Ringelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v heißt kleinstes gemeinsames Vielfaches zweier Ringelemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und $ b $, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v ein gemeinsames Vielfaches von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b ist und seinerseits jedes andere gemeinsame Vielfache von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b ein Vielfaches von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v ist.
Formal schreibt man diese Definition für einen Ring $ R $ so:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v = \operatorname{kgV}(a, b)\quad:\Longleftrightarrow\quad a \mid v,\; b \mid v,\; \forall e \in R: (a \mid e,\, b \mid e) \Rightarrow v \mid e
Diese allgemeinere Definition lässt sich auf mehrere Zahlen ausweiten (sogar auf unendlich viele).
Beispiele
Gaußscher Zahlenring
Im gaußschen Zahlenring Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Z+\mathrm i\Z ist der größte gemeinsame Teiler von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 + 3\mathrm i gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 + \mathrm i , denn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 = -\mathrm i (1 + \mathrm i)^2 und $ 1+3\mathrm {i} =(1+\mathrm {i} )(2+\mathrm {i} ) $. Genau genommen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 + \mathrm i ein größter gemeinsamer Teiler, da alle zu dieser Zahl assoziierten Zahlen ebenfalls größte gemeinsame Teiler sind.
Nicht in jedem Ring existiert für zwei Elemente ein ggT oder ein kgV. Wenn sie einen ggT haben, können sie mehrere ggT haben. Ist der Ring ein Integritätsring, dann sind alle ggT zueinander assoziiert, in Zeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sim .
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R ein Integritätsring und haben die Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b ein kgV, dann haben sie auch einen ggT, und es gilt die Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a \cdot b \sim \operatorname{ggT}(a, b) \cdot \operatorname{kgV}(a, b)
Ist jedoch nur bekannt, dass ein ggT von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und $ b $ existiert, dann muss nicht unbedingt auch ein kgV existieren.
Integritätsring
Im Integritätsring Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R = \mathbb{Z}[\sqrt{-3}] haben die Elemente
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a:= 4 = 2\cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}),\quad b:= (1 + \sqrt{-3})\cdot 2
keinen ggT: Die Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 + \sqrt{-3} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 sind zwei maximale gemeinsame Teiler, denn beide haben den gleichen Betrag. Jedoch sind diese zwei Elemente nicht zueinander assoziiert, also gibt es keinen ggT von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und $ b $.
Die genannten Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1+\sqrt{-3} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 haben aber ihrerseits einen ggT, nämlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 . Dagegen haben sie kein kgV, denn wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v ein kgV wäre, dann folgt aus der „ggT-kgV-Gleichung“, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v assoziiert zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k:=(1 + \sqrt{-3})\cdot2 sein muss. Das gemeinsame Vielfache Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 4 ist jedoch kein Vielfaches von $ k $, also ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k kein kgV und die beiden Elemente haben gar kein kgV.
Ein Integritätsring, in dem je zwei Elemente einen ggT besitzen, heißt ggT-Ring oder ggT-Bereich. In einem ggT-Ring haben je zwei Elemente auch ein kgV.
In einem faktoriellen Ring haben je zwei Elemente einen ggT.
In einem euklidischen Ring lässt sich der ggT zweier Elemente mit dem euklidischen Algorithmus bestimmen.
Zusammenhang zwischen kgV und dem größten gemeinsamen Teiler
Es gilt die folgende Formel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{ggT}(m,n) \cdot \operatorname{kgV}(m,n) = |m \cdot n|
Damit lässt sich das kgV berechnen, falls der ggT (z. B. mit dem euklidischen Algorithmus) bereits bestimmt wurde. Umgekehrt kann man mit dieser Formel auch den ggT aus dem kgV berechnen.
Weblinks
Wikibooks: Algorithmensammlung - Euklidischer Algorithmus und kgV – Lern- und Lehrmaterialien
- Online-Tool zur Berechnung des ggT und des kgV von zwei oder drei Zahlen
- Verschiedene Online-Tools zur Primfaktorzerlegung, ggT und kgV.