Glasfaserverstärkter Kunststoff

Erweiterte Suche

Glasfaserverstärkter Kunststoff, kurz GFK (engl. GRP – glass-fibre reinforced plastic), ist ein Faser-Kunststoff-Verbund aus einem Kunststoff und Glasfasern. Als Basis kommen duroplastische (z. B. Polyesterharz (UP) oder Epoxidharz) als auch thermoplastische (z. B. Polyamid) Kunststoffe in Frage.

Endlos-Glasfasern wurden erstmals 1935 industriell in den USA als Verstärkungsfasern hergestellt. Das erste Flugzeug aus GFK war der Fs 24 Phönix der Akaflieg Stuttgart aus dem Jahr 1957.[1]

GFK ist umgangssprachlich auch als Fiberglas bekannt. Das Wort Fiberglas ist ein Anglizismus, der sich aus fiberglass (AE) bzw. fibreglass (BE), dem englischen Wort für Glasfaser, gebildet hat. In der Nicht-Fachwelt wird oft nur von den Fasern gesprochen, wenn von GFK oder CFK die Rede ist. Immer sind aber die faserverstärkten Kunststoffe gemeint, denn ohne die gestalt- und oberflächengebende Kunststoffe-Matrix wären die Bauteile gar nicht herstellbar.[2]

Eigenschaften und Anwendungsgebiete

Eigenschaften

Fasertyp: E-Glasfaser
Matrixtyp: Epoxidharz
Faservolumenanteil 60 %
alle Angaben sind charakteristische
Durchschnittswerte

Grundelastizitätsgrößen
$ E_{\|} $ 44 500 N/mm2
$ E_{\perp } $ 13 000 N/mm2
$ G_{\perp \|} $ 5 600 N/mm2
$ G_{\perp \perp } $ 5 100 N/mm2
$ \nu _{\perp \|} $ 0,25
Dichte
$ \rho $ 2,0 g/cm3
Grundfestigkeit
$ R_{\|}^{+} $ 1 000 N/mm2
$ R_{\|}^{-} $ 900 N/mm2
$ R_{\perp }^{+} $ 50 N/mm2
$ R_{\perp }^{-} $ 120 N/mm2
$ R_{\perp \|} $ 70 N/mm2
Wärmeausdehnungskoeffizienten
$ \alpha _{\|} $ 7·10−6 1/K
$ \alpha _{\perp } $ 27·10−6 1/K
GFK-Bruch im REM in stereoskopischer Darstellung, Vergrößerung 50x (bez. auf Mittelformatnegativ)
GFK-Bruch im REM in stereoskopischer Darstellung, Vergrößerung 200x (bez. auf Mittelformatnegativ)
GFK-Bruch im REM in stereoskopischer Darstellung, Vergrößerung 500x (bez. auf Mittelformatnegativ)
GFK-Bruch im REM in stereoskopischer Darstellung, Vergrößerung 1000x (bez. auf Mittelformatnegativ)

Glasfaserverstärkte Kunststoffe sind ein kostengünstiger und dennoch sehr hochwertiger Faser-Kunststoff-Verbund. In mechanisch hoch beanspruchten Anwendungen findet sich glasfaserverstärkter Kunststoff ausschließlich als Endlosfaser in Geweben oder in UD-Bändern.

Verglichen mit Faser-Kunststoff-Verbunden aus anderen Verstärkungsfasern hat der glasfaserverstärkte Kunststoff einen relativ niedrigen Elastizitätsmodul. Selbst in Faserrichtung liegt er unter dem von Aluminium. Bei hohen Steifigkeitsanforderungen ist er daher nicht geeignet. Ein Vorteil der Glasfaser im Verbund mit einer passenden Kunststoffmatrix liegt in der hohen Bruchdehnung und der elastischen Energieaufnahme. Deshalb ist er besonders für Blattfedern und ähnliche Bauteile geeignet.

Glasfaserverstärkter Kunststoff hat auch in aggressiver Umgebung ein ausgezeichnetes Korrosionsverhalten. Dies macht ihn zu einem geeigneten Werkstoff für Behälter im Anlagenbau oder auch für Bootsrümpfe. Die über der von kohlenstofffaserverstärktem Kunststoff liegende Dichte wird bei diesen Anwendungen in Kauf genommen.

Mit einer geeigneten Matrix hat glasfaserverstärkter Kunststoff eine gute elektrische Isolationswirkung, was ihn zu einem gut brauchbaren Werkstoff der Elektrotechnik macht. Besonders Isolatoren, die hohe mechanische Lasten übertragen müssen, werden aus glasfaserverstärktem Kunststoff gefertigt. Schaltschränke für den Außenbereich werden wegen der Beständigkeit und Stabilität des Materials häufig aus GFK gefertigt.

Marktlage

Im Jahr 2012 wurden in Europa die folgenden Mengen (in Kilotonnen) an glasfaserverstärktem Kunststoff verarbeitet:

  • Pressen von SMC und BMC: 258
  • Verfahren mit offener Form, wie z. B. Handlaminieren oder Faserspritzen: 235
  • RTM-Verfahren: 120
  • Kontinuierliche Verfahren, wie z. B. die Pultrusion: 125
  • Behälter und Rohre, überwiegend im Faserwickel- und Schleuderverfahren: 147
  • GMT und LFT (siehe Faser-Matrix-Halbzeuge): 108
  • andere Verfahren: 17

Insgesamt wurden 1.010.000 Tonnen glasfaserverstärkter Kunststoff in Europa im Jahr 2012 verarbeitet (Quelle: AVK).

Sorten

Einige typische Sorten glasfaserverstärkter Kunststoffe sind:

EN 60893-3 NEMA LI 1-1998 MIL
Phenol-Formaldehydharz-Laminat PF GC 301 G-3 MIL-I-24768/18 (GPG)
Silikonharz-Laminat SI GC 201 G-7 MIL-I-24768/17 (GSG)
Melaminharz-Laminat MF GC 201 G-5 MIL-I-24768/8 (GMG)
Melaminharz-Laminat MF GC 201 G-9 MIL-I-24768/1 (GME)
Epoxidharz-Laminat EP GC 201 G-10 MIL-I-24768/2 (GEE)
Epoxidharz-Laminat EP GC 202 FR-4 MIL-I-24768/27 (GEE-F)
Epoxidharz-Laminat EP GC 203 G-11 MIL-I-24768/3 (GEB)
Epoxidharz-Laminat EP GC 204 FR-5 MIL-I-24768/28 (GEB-F)
Epoxidharz-Laminat CEM-1 MIL-I-24768/29 (CEM-1)
Epoxidharz-Laminat CEM-3 MIL-I-24768/30 (CEM-3)
Polyesterharz-Laminat UP GM 201 GPO-1 MIL-I-24768/4 (GPO-N-1)
Polyesterharz-Laminat UP GM 202 GPO-2 MIL-I-24768/5 (GPO-N-2)
Polyesterharz-Laminat UP GM 203 GPO-3 MIL-I-24768/6 (GPO-N-3)
Polyesterharz-Laminat GPO-1P MIL-I-24768/31 (GPO-N-1P)
Polyesterharz-Laminat GPO-2P MIL-I-24768/32 (GPO-N-2P)
Polyesterharz-Laminat GPO-3P MIL-I-24768/33 (GPO-N-3P)
PTFE-Laminat MIL-I-24768/7 (GTE)

Typische Bauteile

Kurz- und langfaserverstärkte Bauteile

Kurzfaserverstärkte Bauteile finden vor allem Verwendung als Verkleidungen, oder werden wegen der guten Formbarkeit und großen Gestaltungsfreiheit hergestellt. Kurzfaserverstärkte Bauteile weisen meist ein quasiisotropes Verhalten auf, da die Kurzfasern zufällig verteilt vorliegen. Eine schwach ausgeprägte Orthotropie kann beim Spritzguss von kurzfaserverstärkten Thermoplasten entstehen. Die Fasern orientieren sich dabei entlang der Fließlinien. Die Beimischung von Kurzglasfasern zu Thermoplasten verbessert deren Steifigkeit, Festigkeit und insbesondere deren Verhalten bei hohen Temperaturen. Das Kriechen kurzfaserverstärkter Thermoplaste ist geringer als das des Grundmaterials.

Endlosfaserverstärkte Bauteile

Endlosfaserverstärkte Bauteile werden mit definierten Materialeigenschaften hergestellt. Immer häufiger finden sie Verwendung im Leichtbau.

  • GFK aus Geweben oder Gelegen
  • GFK aus Rovings oder unidirektionalen Geweben/Gelegen (hergestellt im Strangziehverfahren)
  • Mischformen aus den oben genannten Arten

Anwendungen (Auswahl)

  • Hüllen und Umwandungen
  • Verkleidungen und Fassaden
  • Profile und Bewehrungen
  • Rohre
  • Kleinformteile
  • Blattfedern
  • Rotorblätter für Windenergieanlagen
  • Rümpfe von Booten und Yachten
  • Rümpfe und Tragflächen von Segelflugzeugen oder Hochleistungs-Motorflugzeugen
  • Fahrzeugteile (z. B. Motorhauben, Kotflügel)
  • Bewehrung im Betonbau
  • Spielplatzrutschen / Rutschbahnen
  • Wurfarme für Armbrüste
  • Kletterhilfen für die Fassadenbegrünung mit Kletterpflanzen

Probleme bei der Herstellung und Verarbeitung

Datei:GFK Bearbeitung.jpg
Anfallender Staub bei der Bearbeitung eines GFK-Bauteils
Datei:Luftströmung.jpg
Nachweis der laminaren Luftströmung zur Absaugung der Styroldämpfe in einer Fertigungshalle für GFK-Yachten

In der Aushärtungsphase der Harze werden Styroldämpfe freigesetzt. Diese reizen die Schleimhäute und Atemwege. Deshalb schreibt die GefStoffV einen maximalen Arbeitsplatzgrenzwert (AGW) von 86 mg/m³ vor. In bestimmten Konzentrationen kann sogar ein explosionsfähiges Gemisch entstehen. Bei der Weiterbearbeitung von GFK-Bauteilen (Schleifen, Schneiden, Sägen) entstehen Feinstäube und Späne mit glasigen Filamenten sowie klebrige Stäube in erheblichen Mengen. Diese beeinträchtigen die Gesundheit von Menschen und die Funktionalität der Maschinen und Anlagen. Damit Arbeitsschutzvorschriften eingehalten und die Wirtschaftlichkeit nachhaltig gewährleistet werden kann, ist die Installation von effektiven Absaug- und Filteranlagen nötig.[3]

Literatur

  • Detlef Jens: Die klassischen Yachten. Bd. 2: Die Kunststoffrevolution. Koehlers Verlagsgesellschaft, Hamburg, 2007, ISBN 978-3-7822-0945-8.
  • Fachzeitschrift PLASTVERARBEITER, Ausgabe Mai 2011, Artikel Ohne Staub und ohne Styroldämpfe, Verlag Hüthig GmbH, Heidelberg

Recycling

Recycling-Code für Glasfaserverstärkter Kunststoff

Der Recycling-Code für glasfaserverstärkten Kunststoff ist 07.

Siehe auch

Weblinks

 Commons: Glasfaserverstärkter Kunststoff – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Einzelnachweise

  1. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer, 2005.
  2. AVK - Industrievereinigung Verstärkte Kunststoffe e. V. (Hrsg.): Handbuch Faserverbund-Kunststoffe. Vieweg + Teubner, 2010.
  3. Türschmann/Jakschik/Rother: White Paper zum Thema "Reine Luft bei der Fertigung glasfaserverstärkter Kunststoffteile (GFK)", März 2011

Die cosmos-indirekt.de:News der letzten Tage

22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.