Geometrische Quantisierung
Die geometrische Quantisierung ist der Versuch, eine Abbildung zwischen klassischen und Quanten-Observablen zu definieren, die einerseits wie jede Quantisierung den untenstehenden drei Axiomen Paul Diracs entspricht und andererseits in Begriffen der Differentialgeometrie formuliert ist (insbesondere unabhängig von der Wahl bestimmter Koordinaten).
Definition
Ein wichtiger Bestandteil der geometrischen Quantisierung ist die Abbildung
In dieser Formel ist
1)
2) Wenn
3)
Nach der Einführung dieser Abbildung („Präquantisierung“) muss noch ein Maß auf dem Raum der klassischen Lösungen gefunden sowie eine Polarisation gewählt werden.
Vorteile und Nachteile
Ein großer Vorteil der geometrischen Quantisierung ist ihre Unabhängigkeit von gewählten Koordinaten und ihre geometrische Anschaulichkeit. Ein Nachteil sind die mit dem Kalkül verbundenen mathematischen Schwierigkeiten, insbesondere das Fehlen eines geeigneten Maßes für die unendlichdimensionalen Räume im Fall von Feldtheorien.
Literatur
Nicholas Michael John Woodhouse: Geometric Quantisation, Oxford University Press 1993, ISBN 0-19-853673-9