Fresnel-Integral
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Analysis
- Quantenmechanik
Als Fresnel-Integrale werden in der Mathematik, insbesondere im Teilgebiet der Analysis, zwei uneigentliche Integrale bezeichnet, die nach dem Physiker Augustin Jean Fresnel benannt sind.
Definition
Die beiden Integrale
- $ \int _{-\infty }^{\infty }\cos(t^{2})\,\mathrm {d} t=\int _{-\infty }^{\infty }\sin(t^{2})\,\mathrm {d} t={\tfrac {1}{2}}{\sqrt {2\pi }} $
heißen Fresnel-Integrale. Sie ergeben sich aus dem gaußschen Fehlerintegral unter Benutzung des cauchyschen Integralsatzes.
Geschichte
Fresnel beschäftigte sich um 1819 mit diesen Integralen. Euler betrachtete schon 1781 die allgemeineren Integrale
- $ \int _{-\infty }^{\infty }e^{(a^{2}-1)t^{2}}\cos(2at^{2})\,\mathrm {d} t={\frac {\sqrt {\pi }}{1+a^{2}}},\qquad -1\leq a\leq 1 $
und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int_{-\infty}^{\infty}e^{(a^2-1)t^2}\sin(2at^2)\,\mathrm{d}t = \frac{a\,\sqrt{\pi}}{1+a^2},\qquad -1\le a\le1.
Fresnel-Integrale in der Quantenmechanik
Sie spielen auch eine wichtige Rolle in der Quantenmechanik. Der Ansatz, die Quantenmechanik aus Pfadintegralen herzuleiten, basiert auf Integralen der Form:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{F}^{(j)}\equiv \mathcal{N} \int_{-\infty}^{\infty} \ \mathrm{e}^{i \alpha \xi^2} \xi^j \mathrm{d}\xi\,.
Eine praktische Formulierung der Normierungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{N} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{N} \equiv \sqrt{\frac{\alpha}{i\pi}} ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j ist eine ganze natürliche Zahl. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j=0 ist das Integral
- $ {\mathcal {F}}\equiv {\mathcal {F}}^{(0)}\equiv {\mathcal {N}}\int _{-\infty }^{\infty }\ \mathrm {e} ^{i\alpha \xi ^{2}}\mathrm {d} \xi $
und heißt dann Fresnel-Integral. Integrale dieser Form tauchen in der aus den feynmanschen Pfadintegralen hergeleiteten Schrödingergleichung auf.
Aus dem Fresnel-Integral ergibt sich eine komplexe Zahl, deren Real- und Imaginärteile bestimmt sind durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int_{-\infty}^{\infty} \cos (\alpha \xi^2) \, \mathrm{d}\xi = \sqrt{\frac{\pi}{2\left|\alpha\right|}} und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int_{-\infty}^{\infty} \sin (\alpha \xi^2) \, \mathrm{d}\xi = \sqrt{\frac{\pi}{2\left|\alpha\right|}}\cdot \operatorname{sign}(\alpha)\,.
Beide Integrale konvergieren. Das Cosinus-Integral ist aufgrund der Symmetrie des Cosinus invariant gegenüber einem Vorzeichenwechsel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha , der antisymmetrische Sinus wechselt das Vorzeichen. Aus der Addition ergibt sich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sqrt{i}=e^{i\frac{\pi}{4}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -1=e^{i\pi} und einer Fallunterscheidung für die Signumfunktion als Lösung des Fresnel-Integrals
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{F}\equiv \mathcal{F}^{(0)} \equiv \mathcal{N} \int_{-\infty}^{\infty} \ \mathrm{e}^{i \alpha \xi^2} \mathrm{d}\xi = \sqrt{\frac{\alpha}{i\pi}}\cdot \sqrt{\frac{i\pi}{\alpha}}=1\,.
Hieraus erklärt sich auch die Normierungskonstante, die genau das Inverse der Integrallösung sein muss, damit der Gesamtausdruck 1 ist. In der Quantenmechanik wählt man dies aus pragmatischen Gründen und aus der Idee heraus, dass eine Wellenfunktion einer Aufenthaltswahrscheinlichkeit entspricht; also muss das Integral über diese Funktion 1 sein, da sich das beschriebene Teilchen schließlich irgendwo befindet.
Quellen
- Reinhold Remmert, Georg Schumacher: Funktionentheorie 1. 5. Auflage, Springer-Verlag 2002, ISBN 3540590757, Seiten 178f.
- Reinhold Remmert, Georg Schumacher: Funktionentheorie 2. 3. Auflage, Springer-Verlag 2007, ISBN 3540404325, Seite 47.