Enolate
Ein Enolat ist das Anion der Enolform einer Carbonylverbindung. Enolate entstehen durch die Deprotonierung eines CH-aciden Wasserstoffs in α-Position zur Carbonylfunktion. Es lassen sich zwei Grenzstrukturen formulieren, Enolate sind somit ambidente Anionen. Enolate sind gute Nucleophile, die mit weichen Elektrophilen (insbesondere Kohlenstoff-Elektrophilen) bevorzugt an der α-Position reagieren.
Erzeugung
Deprotonierung einer Carbonyl-Verbindung mit starken Basen. Zur unvollständigen Deprotonierung im Gleichgewicht reichen bereits Hydroxide oder Alkoholate aus (pKa von Ketonen ist ca. 20, von Estern ca. 25). Mit stärkeren Basen erreicht man eine vollständige Deprotonierung. Hierzu wird am häufigsten Lithiumdiisopropylamid (LDA), aber auch LiHMDS, KHMDS oder LTMP verwendet. Allerdings dürfen die verwendeten Basen nicht selber nucleophil sein, da sie ansonsten die Carbonylverbindung am elektrophilen Carbonyl-Kohlenstoff angreifen und nicht deprotonieren. Daher sind beispielsweise Lithiumalkylverbindungen wie Butyllithium nicht geeignet.
Struktur
Regioselektivität
Bei asymmetrischen Ketonen sind oft zwei Regioisomere denkbar, die bei der Deprotonierung entstehen. Unter thermodynamischer Kontrolle (schwache Base, höhere Temperatur) wird dabei bevorzugt an der Stelle deprotoniert, wo die höher substituierte Doppelbindung entsteht (thermodynamisches Enolat, 2). Unter kinetischer Kontrolle (starke Basen wie LDA, tiefe Temperaturen, typisch −78 °C) wird allerdings bevorzugt das sterisch leichter zugängliche Proton entfernt, es entsteht die niedriger substituierte Enolat-Doppelbindung (kinetisches Enolat, 1).
Stereoselektivität
Die Geometrie der Enolat-Doppelbindung (falls R > Methyl) wird durch die Größe des Substituenten R′ bestimmt. Es gibt hierfür zwei Möglichkeiten: (O)-(Z)-Enolate und (O)-(E)-Enolate. Der Zusatz (O) vor der E/Z-Angabe soll verdeutlichen, dass nur die Relativkonfiguration zwischen dem Enolat-Sauerstoff und dem Subsitutenten der Enolat-Doppelbindung betrachtet wird, was nicht mit der IUPAC-Nomenklatur für Doppelbindungen übereinstimmen muss. Große Substituenten R′ bevorzugen das (O)-(Z)-Enolat, kleine Substituenten das (O)-(E)-Enolat. Als große Substituenten kommen tertiäre Alkylsubstituenten sowie –NR2 in Frage. Als kleine Substituenten fasst man primäre Alkylsubstituenten sowie –OR und –SR auf.
In der organischen Synthese werden chirale Auxilare zur stereoselektiven Reaktionsführung u.a. von Enolaten verwendet.
Reaktionen
Als gute Nucleophile können Enolate mit einer Vielzahl von Elektrophilen umgesetzt werden. Mögliche Elektrophile sind unter anderem Alkylhalogenide (Alkylierung), Carbonsäurechloride (Acylierung), Carbonylverbindungen (Aldolreaktion), Michael-Akzeptoren, Epoxide, Vinyl- und Aryl-Halogenide. Alle diese Elektrophile greifen ausschließlich am C-Atom der Enolate an. Ein Angriff auf den Enolat-Sauerstoff ist selten und erfolgt nur durch harte Elektrophile (HSAB-Prinzip) wie beispielsweise Silylchloride oder Sulfonsäurederivate.
Literatur
Reinhard Brückner: Reaktionsmechanismen. 3. Auflage, Spektrum Akademischer Verlag, München 2004, S. 516 ff., ISBN 3-8274-1579-9.