Bake-hardening-Stahl

Bake-Hardening-Stahl ist ein Werkstoff, der eine Festigkeitsteigerung durch Erwärmen auf Temperaturen um 200 °C erfährt. Der Name bezeichnet diesen Vorgang: bake→ backen und hardening → verfestigen. Dieser Stahl wird oft für Karosserieteile verwendet, da er gut in der Presse umformbar ist und beim Einbrennen des Lackes eine Festigkeitssteigerung erfährt.

Die Festigkeit steigt durch das Anlagern von Kohlenstoffatomen an Versetzungen. Diese bilden sogenannte Cottrell-Wolken oder Feinstausscheidungen[1], welche die Versetzungsbewegung behindern. Dadurch erhöht sich die für das Einleiten einer plastischen Verformung des Materials benötigte Spannung − die Festigkeit − steigt.

Cottrell-Wolken bilden sich auch bei niedrigeren Temperaturen. Da sie jedoch durch Diffusion gebildet werden, ist die Bildungsgeschwindigkeit von der Temperatur abhängig. Mit steigender Temperatur können die Kohlenstoffatome schneller durch das Kristallgitter wandern (Diffundieren), wodurch sich schneller mehr Cottrellsche Wolken bilden. Da Kohlenstoffatome jedoch relativ klein sind, reichen bereits Temperaturen von 170 bis 200 °C aus, um den Effekt der Festigkeitssteigerung zu erreichen. Auch Stickstoffatome bewirken einen Bake-hardening-Effekt, dieser ist allerdings im Allgemeinen schlechter kontrollierbar als der durch Kohlenstoffatome bewirkte Festigkeitsanstieg.

Karosserieteile aus diesem Material können heute aus dünnerem Blech als früher hergestellt werden. Ein Beispiel ist die Motorhaube eines Kfzs, die nun statt der üblichen 0,7 Millimeter nur noch 0,43 Millimeter dick ist. Der Haupteinsatzzweck sind jedoch crashrelevante Bauteile wie zum Beispiel Längsträger, Tunnelbleche oder A-, B-, C-Säulen.

Quellen

  1. Bleck: Werkstoffkunde Stahl, Verlag Mainz 2004

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.01.2021
Optik - Teilchenphysik
Aus Weiß wird (Extrem)-Ultraviolett
Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben eine neue Methode entwickelt, um die spektrale Breite von extrem-ultraviolettem (XUV) Licht zu modifizieren.
25.01.2021
Astrophysik - Teilchenphysik
Neue Möglichkeiten bei Suche nach kalter dunkler Materie
Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie leicht sie sich in Photonen, die Teilchen des Lichts, verwandeln können.
25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.