August Köhler (Optiker)

Erweiterte Suche

August Karl Johann Valentin Köhler (* 4. März 1866 in Darmstadt; † 12. März 1948 in Jena) war ein deutscher Professor und Mitarbeiter bei Zeiss in Jena. Er ist vor allem für die Entwicklung der Köhler-Beleuchtung in der Mikroskopie bekannt, die die Konstruktion von Mikroskopen revolutionierte. Köhler war Mitentwickler des Ultraviolettmikroskops[1] und erkannte als erster die Bedeutung der Eigenfluoreszenz in der Mikroskopie. 1908 stellte er der Öffentlichkeit erstmals ein Lumineszenzmikroskop vor.

Kindheit und Ausbildung

Köhler wurde 1866 in Darmstadt geboren, wo er bis 1884 das Ludwig-Georgs-Gymnasium besuchte. Er studierte an der Technischen Universität in Darmstadt, sowie an der Ruprecht-Karls-Universität in Heidelberg und der Justus-Liebig-Universität in Gießen.

Lehre und Akademische Laufbahn

1888 schloss er sein Studium ab und unterrichtete im Folgenden an Gymnasien in Darmstadt und Bingen, bevor er an die Universität zurückkehrte. Seine Akademische Laufbahn begann er bei Professor Johann Wilhelm Spengel (1852–1921) am Zoologischen Institut der Universität Gießen. Das Ziel seiner Doktorarbeit war die Taxonomie von Napfschnecken, eine Aufgabe, die stark von mikroskopischer Bildgebung abhing und Köhler dazu veranlasste, die Qualität seiner mittels Mikrofotografie erstellten Bilder zu verbessern. Das Ergebnis dieser Arbeit wurde 1893 veröffentlicht.[2]

Nachdem er 1893 an der Universität Gießen seinen Doktortitel erworben hatte, arbeitete Köhler einige Jahre lang als Gymnasiallehrer in Bingen. 1900 holte ihn Siegfried Czapski zu Zeiss nach Jena. 45 Jahre lang blieb er als Physiker bei Zeiss und wirkte bei der Entwicklung eines Modernen Designs für Lichtmikroskope mit. Von 1922 bis zu seinem Ruhestand 1945 war er außerdem Professor für Mikrofotometrie an der Friedrich-Schiller-Universität Jena.

Köhler-Beleuchtung

Zur Zeit der Erfindung seiner revolutionären Mikroskopbeleuchtung arbeitete Köhler gerade an der Überwindung von Problemen in der Mikrofotografie. Mikroskope wurden mit Hilfe von Gaslampen, Spiegeln und anderen Lichtquellen einfacher Bauart betrieben. Diese führten zu ungleichmäßiger Beleuchtung der Probe und erschwerten die Aufnahme von Fotos hoher Qualität.

Im Laufe seiner Doktorarbeit entwickelte Köhler eine Konfiguration, die ein gleichmäßig ausgeleuchtetes Gesichtsfeld ermöglichte sowie Blendlicht von der Lichtquelle reduzierte. Dazu gehörte eine Sammellinse für die Lampe, die es ermöglichte, die Lichtquelle auf die vordere Blende des Kondensors zu fokussieren. So konnte wiederum der Kondensor auf die Probe fokussiert werden. Dieses Beleuchtungsverfahren ist in modernen Mikroskopen immer noch weit verbreitet und bildet die Grundlage für die Phasenkontrastmikroskopie[3], Differentialinterferenzkontrastmikroskopie, Epifluoreszenzmikroskopie und Konfokalmikroskopie.[4]

Weitere Beiträge zur Mikroskopie

Als Köhler 1900 zu Zeiss kam, hatten Ernst Abbe und Otto Schott bereits durch ihre Beiträge zur Theorie der Präzisionsoptik den Weg für die Verbesserung von Mikroskopen geebnet. Köhlers Fachwissen und seine Beleuchtungstechnik trugen dazu bei, mit Abbes Objektiven die bestmögliche Auflösung zu erreichen.

1904 beobachtete er, dass Strukturen unter dem Mikroskop eine Leuchterscheinung zeigen, wenn diese mit kurzwelligem Licht bestrahlt werden. Aus dieser Beobachtung entwickelte er zusammen mit Henry Siedentopf die Fluoreszenzmikroskopie. Am 4. April 1908 stellte er sie anlässlich eines Mikroskopiekurses als "Lumineszenzmikroskopie" erstmals der Öffentlichkeit vor.

Während seiner Zeit bei Zeiss trug er zu vielen weiteren Neuerungen bei. So entwickelte er zusammen mit seinem Kollegen Moritz von Rohr ein Ultraviolettmikroskop und entdeckte die Gitterbeleuchtung, eine Methode, die später bei der Behandlung von Tumoren eingesetzt wurde. Eine Anregung von Köhler führte zur Entwicklung von parfokalen Linsen, die es ermöglichen, die Probe im Fokus zu behalten, wenn ein Objektiv ausgewechselt wird.

Patente und Publikationen

Als Mitarbeiter bei Zeiss meldete er mindestens 25 Patente in Europa sowie mindestens zehn in den USA an. Dazu gehörten Projektions- und Beleuchtungsverfahren für Kinematographen, Mikroskopanwendungen sowie Hell- und Dunkelfeldbeleuchtung. Seine Beiträge zur Biologie beinhalten Feinstrukturanalysen von Kieselalgen.

Weblinks

Literatur von und über August Köhler im Katalog der Deutschen Nationalbibliothek

Einzelnachweise

  1. Ultraviolettmikroskop bei www.mikroskop-museum.de
  2. Köhler A: Gedanken zu einem neuen Beleuchtungsverfahren für mikrophotographische Zwecke. In: Zeitschrift für wissenschaftliche Mikroskopie. 1893.
  3. Köhler A, Loos W: Das Phasenkontrastverfahren und seine Anwendungen in der Mikroskopie. In: Naturwissenschaften. 29, 1941, S. 49–61. doi:10.1007/BF01476460.
  4. Douglas B. Murphy (2001): Fundamentals of light microscopy and electronic imaging, Wiley-Liss, Inc., New York, ISBN 0-471-25391-X

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
30.12.2021
Sonnensysteme | Planeten
Rekonstruktion kosmischer Geschichte kann Eigenschaften von Merkur, Venus, Erde und Mars erklären
Astronomen ist es gelungen, die Eigenschaften der inneren Planeten unseres Sonnensystems aus unserer kosmischen Geschichte heraus zu erklären: durch Ringe in der Scheibe aus Gas und Staub, in der die Planeten entstanden sind.