WKB-Näherung

WKB-Näherung

Die semiklassische WKB-Näherung aus der Quantenmechanik, die nach Gregor Wentzel, Hendrik Anthony Kramers und Léon Brillouin benannt ist, liefert eine Näherung der Lösung der eindimensionalen, stationären Schrödingergleichung. Die Näherung basiert auf der Annahme, dass sich das Potential V(x) 'langsam' mit der Position ändert und sich daher eine Lösung aus dem konstanten Potential $ V(x)=V_{0} $ finden lässt.

Die Lösung der Schrödingergleichung lautet in dieser Näherung

$ \psi (x)=\left({\frac {\mbox{const}}{2m[E-V(x)]}}\right)^{1/4}\exp \left(\pm {\frac {i}{\hbar }}\int \mathrm {d} x'{\sqrt {2m(E-V(x'))}}\right). $

Die beiden Vorzeichen stehen für zwei unabhängige Lösungen. Sie sind nur dann eine gute Näherung, wenn sich das Potential über die Ausdehnung einer Wellenlänge nur langsam ändert.

Geschichte

Die Näherung wurde 1926 fast gleichzeitig und unabhängig voneinander von den Physikern Gregor Wentzel, Hendrik Anthony Kramers und Leon Brillouin publiziert, deren Initialen ihr den Namen gaben.

Herleitung

Aus der eindimensionalen stationären Schrödinger-Gleichung

$ -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\psi (x)+V(x)\psi (x)=E\psi (x) $

ergibt sich bei konstantem Potential $ V(x)=V_{0} $ als Lösung die ebene Welle

$ \psi (x)=A\exp \left(\pm {\frac {i}{\hbar }}p_{0}x\right) $

mit $ p_{0}={\sqrt {2m(E-V_{0})}} $. Bei langsamer Änderung des Potentials, also einem Potential, das in der Größenordnung der deBroglie-Wellenlänge als konstant angesehen werden kann, kann man $ p(x)={\sqrt {2m(E-V(x))}} $ annehmen und daraus einen zum Problem mit konstantem Potential analogen Lösungsansatz folgendermaßen wählen.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(x)= A \exp \left(\frac{i}{\hbar} S(x) \right)

Eingesetzt in die Schrödinger-Gleichung erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\frac{i\hbar}{2m} \frac{d^2S(x)}{dx^2} + \frac 1 {2m} \left[ \frac {dS(x)}{dx}\right]^2 + V(x) -E=0

Soweit wurde keine Näherung gemacht. Wir können nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S(x) folgendermaßen in Potenzen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar entwickeln Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S(x)= S_0(x) + \hbar S_1(x) + \frac{\hbar^2}{2} S_2(x)+...

Das setzt man in die Schrödingergleichung ein:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\frac{i\hbar}{2m} \frac{d^2}{dx^2} \left(S_0(x) + \hbar S_1(x) + ...\right) + \frac 1 {2m} \left[ \frac {d}{dx}\left( S_0(x) + \hbar S_1(x) + ...\right)\right]^2 + V(x) -E=0

Nun kann man diese Terme bis zur gewünschten Ordnung berechnen und nach der Potenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar sammeln.

Jeder zu einer Potenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar zugehörige Term muss dann einzeln verschwinden.

Für die zweite Ordnung lautet die Schrödingergleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\frac{i\hbar}{2m} \left[ \frac{d^2}{dx^2} S_0(x) + \hbar \frac{d^2}{dx^2} S_1(x)\right] + \frac 1 {2m} \left[ \frac {d}{dx} S_0(x) + \hbar \frac {d}{dx} S_1(x) \right]^2 + V(x) -E=0

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Leftrightarrow \hbar^0 \left[\frac 1 {2m} \left(\frac {dS_0(x)}{dx}\right)^2 +V(x) -E\right] + \hbar^1 \left[-\frac{i}{2m} \frac{d^2S_0(x)}{dx^2}+ \frac {1}{m} \frac{d S_0(x)}{dx} \frac {d S_1(x)}{dx} \right] + \hbar^2 \left[\frac 1 {2m} \left( \frac {dS_1(x)}{dx} \right)^2 - \frac{i}{2m} \frac{d^2S_1(x)}{dx^2} \right] =0

Für die Differentialgleichung im Glied nullter Ordnung in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{2m}\left[\frac{dS_0(x)}{dx}\right]^2 + V(x)-E=0

findet man eine Lösung durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_0(x)= \pm \int\sqrt{2m(E-V(x'))}dx'

und es folgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(x)= A \exp \left( \pm \frac i \hbar \int \sqrt{2m(E-V(x'))}dx'\right).

Folgerungen für die Transmission durch eine Barriere

Die WKB-Approximation wird benutzt, um nichtrechteckige Barrieren zu nähern. Dazu wird die Barriere in viele dünne rechteckige Teilbarrieren zerlegt.

Für die Tunnelwahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left| T \right| ^2 durch diese Potentialbarriere werden die einzelnen Tunnelwahrscheinlichkeiten für jedes Segment multipliziert. Damit ergibt sich

$ ln\left|T\right|^{2}\approx -2\int \limits _{\mathrm {barrier} }\kappa (x)\mathrm {d} x, $

wobei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa(x) = \sqrt{\frac{2m(V(x)-E)}{\hbar^2}}.

Siehe auch

Referenzen

  • Brillouin, Léon: La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives. In: Comptes Rendus de l'Academie des Sciences. 183, 1926, S. 24–26.
  • Hendrik Anthony Kramers: Wellenmechanik und halbzahlige Quantisierung. In: Zeitschrift für Physik. Ausgabe 39, Nr. 10, Springer, Berlin / Heidelberg 1926, ISSN 0939-7922, S. 828–840, doi:10.1007/BF01451751.
  • Wentzel, Gregor: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. In: Zeitschrift für Physik. 38, Nr. 6–7, 1926, S. 518–529. Bibcode: 1926ZPhy...38..518W. doi:10.1007/BF01397171.
  • B.H.Brandsen and C.J.Joachain: Introduction to Quantum Mechanics, Longman Group UK (1989)

Weblinks