Theorie der endlichen Kugelpackungen
Die Theorie der endlichen Kugelpackungen ist ein Gebiet der Mathematik, welches sich mit der Frage beschäftigt, wie eine endliche Anzahl gleich großer Kugeln optimal, also möglichst platzsparend, verpackt werden kann. Endliche Kugelpackungen sind erst in den letzten Jahrzehnten mathematisch genauer untersucht worden. László Fejes Tóth hat dazu wichtige Grundsteine gelegt.
Eine weitaus längere Tradition haben dagegen unendliche Kugelpackungen. Das Problem der dichtesten Packung kann auch für eine unendliche Anzahl von Kugeln betrachtet werden, welche natürlich nur theoretischer / fiktiver Natur sein können, da sonst das gesamte Universum eine dichteste Kugelpackung darstellen würde. Dabei geht es um Packungen von Kugeln, die eine möglichst gute Raumerfüllung und damit auch möglichst wenig Zwischenräume aufweisen. Die berühmteste Vermutung hierzu ist die Keplersche Vermutung. Atome in Kristallstrukturen sind logischerweise immer nur in endlichen Kugelpackungen angeordnet.
Packung und konvexe Hülle
Allgemein und anschaulich bezeichnet man eine beliebige Anordnung einer Menge von räumlich zusammenhängenden, möglicherweise verschiedengroßen und verschiedenförmigen Objekten im Raum als Packung, wenn sich ihre Punktmengen nicht überschneiden. Gegenstand der Betrachtung hier sind aber lediglich gleich große Kugeln. Der Name Packung rührt nun daher, dass durch eine solche Anordnung exakt ein bestimmtes Gebiet, die sogenannte Hülle dieser Packung, festgelegt ist. Sie besteht aus allen Punkten, die auf einer Geraden zwischen je zwei beliebigen Punkten der Objektmenge liegen. Da dieses Gebiet immer konvex (also nach außen, nie nach innen gewölbt) ist, nennt man dieses Gebiet auch exakte konvexe Hülle.
Packungsformen
Kugeln kann man in verschiedenste Weise anordnen. Man unterscheidet dabei zwischen drei grundlegenden Packungsformen: der Wurst-, Pizza- und Clusterpackung.
- Liegen die Mittelpunkte der Kugeln auf einer geraden Linie, wie in der ersten Abbildung dargestellt, so spricht man von einer wurstförmigen Packung oder Wurstpackung, da die Hülle hier die Form einer Wurst besitzt. Ein ungefähres Beispiel hierfür sind handelsübliche Packungen von Tennisbällen in einem Röhren-Karton. Tatsächlich müssten die beiden Enden der Verpackung abgerundet sein, was in der Realität aber meist nicht der Fall ist.
- Liegen die Mittelpunkte der Kugeln auf einer Ebene, so spricht man von einer pizzaförmigen Packung oder Pizzapackung. Ungefähre Beispiele für derartige Packungen in der realen Welt findet man bei Pralinen.
- Liegen die Mittelpunkte beliebig im Raum, so spricht man von einer clusterförmigen Packung, Clusterpackung oder schlicht von einem Cluster. Beispiele in der realen Welt findet man bei Obst, welches in einer Kiste mit gegeneinander versetzten Reihen angeordnet wird.
Nach dieser Definition ist eine Wurstpackung auch immer eine Pizzapackung und eine Pizzapackung auch immer eine Clusterpackung.
Ein oder zwei Kugeln bilden immer eine Wurstpackung. Mit drei Kugeln lässt sich auch eine Pizzapackung realisieren, die keine Wurstpackung darstellt. Ab vier Kugeln existiert auch eine clusterförmige Packung, die keine Pizzapackung darstellt.
Optimale Packung
Abhängig von der Packungsform ist der Leerraum zwischen den Kugeln unterschiedlich groß. Dies kommt in der Packungsdichte zum Ausdruck, dem Verhältnis des Volumens der Kugeln zum Volumen der Hülle. Je höher die Packungsdichte, desto geringer ist sowohl der Leerraum einer Packung, als auch das Volumen der Hülle (bei gleichbleibender Anzahl und damit gleichbleibendem Gesamtvolumen der zu verpackenden Kugeln).
Aus ökonomischen Gründen ist nun eine Packung mit größtmöglicher Packungsdichte gesucht. Es ist unmittelbar einsichtig, dass eine maximale Packungsdichte die Eigenschaft besitzt, dass ihre Objekte dicht aneinander liegen, das heißt, sie müssen einander an ihren Oberflächen berühren. Exakter lässt sich dies ausdrücken, wenn man zu einer Anordnung einen Graphen bildet, der jedem Objekt einen Knoten zuordnet und zwei Knoten dann durch eine Kante verbindet, wenn sie sich an ihren Oberflächen berühren. Der so entstehende Graph muss immer zusammenhängend sein.
Die Wurstkatastrophe
Bei drei Kugeln ist die optimale Packung eine Wurstpackung. Diese Regel behält ihre Gültigkeit bis zu einer Anzahl von 55 Kugeln. Darüber hinaus gilt dies noch für 57, 58, 63 und 64 Kugeln.[1] Wie die optimale Clusterpackung für die anderen Fälle aussieht, ist unbekannt.
Diese Tatsache wird von Mathematikern scherzhaft als Wurstkatastrophe bezeichnet. Die Bezeichnung Katastrophe beruht auf der Erkenntnis, dass sich die optimale Anordnung von einer zur anderen Packungsform schlagartig von einer geordneten Wurstpackung in eine relativ ungeordnete Clusterpackung ändert und umgekehrt, ohne dass sich dies in befriedigender Weise erklären lässt.
Mathematischer Hintergrund
Eine optimale Anordnung für Kugeln zu finden, ist ein mathematisch herausforderndes Problem. Jörg Michael Wills hat 1985 die Vermutung aufgestellt, dass bis zu einer gewissen Anzahl von Kugeln die Anordnung als Wurst optimal ist, während ab einer (möglicherweise größeren) Zahl eine Clusterpackung die beste ist, die weder Wurst- noch Pizzapackung darstellt. Die kleinste Zahl, ab der die Wurstpackung nicht mehr optimal ist, entspricht der Kugelzahl, ab der die Wurstkatastrophe eintritt. Diese Vermutung ist teilweise bewiesen worden: 1992 konnten Pier Mario Gandini und Jörg Michael Wills zeigen[1], dass ab 56 Kugeln mit den Ausnahmen 57, 58, 63, 64 die lineare Anordnung als Wurst nicht die beste ist, sondern in diesem Fall eine Clusterpackung besser ist, die keine Wurstpackung darstellt. Mittlerweile konnte auch für diese vier Ausnahmen gezeigt werden, dass die Wurstpackung nicht optimal ist. Damit tritt die Wurstkatastrophe auf jeden Fall bei höchstens 56 Kugeln ein.
Es wird zwar allgemein angenommen, dass bei weniger als 56 Kugeln die Wurst optimal ist, aber ein Beweis dafür steht noch aus.[2]
Beispiel für den Nachweis, dass eine Wurstpackung nicht optimal ist
Im Folgenden wird gezeigt, dass die Wurstpackung für 455 Kugeln nicht optimal ist, sondern eine spezielle Clusterpackung existiert, die weniger Volumen einnimmt.
Das Volumen der konvexen Hülle einer Wurstpackung aus $ n $ Kugeln mit dem Radius $ r $ lässt sich aus elementaren geometrischen Körpern berechnen. Die Hülle besteht in der Mitte aus einem Zylinder der Höhe $ h=2r\cdot (n-1) $ und an den beiden Enden aus je einer Halbkugel mit dem Radius $ r $. Das Volumen $ V_{W} $ der konvexen Hülle berechnet sich deshalb nach der folgenden Formel.
- $ {\begin{aligned}V_{W}&=V_{\text{Zylinder}}+2\cdot V_{\text{Halbkugel}}\\&=V_{\text{Zylinder}}+V_{\text{Kugel}}\\&=\pi hr^{2}+{\frac {4}{3}}\pi r^{3}\\&=\pi 2r\cdot (n-1)\cdot r^{2}+{\frac {4}{3}}\pi r^{3}\\&=2\cdot \left(n-{\frac {1}{3}}\right)\pi r^{3}\end{aligned}} $
Ähnlich kann man nach dem Volumen der konvexen Hülle einer Tetraederpackung fragen. Bei einer Tetraederpackung werden die Kugeln so aufgeschichtet, dass sie die Form eines Tetraeders annehmen. Ein vollständiger Tetraeder ergibt sich dabei natürlich nur für bestimmte Kugelzahlen. Findet man entlang jeder Kante des Tetraeders x Kugeln, so berechnet sich die Gesamtzahl der aufgeschichteten Kugeln n durch
- $ n=\sum _{i=1}^{x}\sum _{j=1}^{i}j=\sum _{i=1}^{x}{\frac {i\cdot (i+1)}{2}}={\frac {x\cdot (x+1)\cdot (x+2)}{6}}. $
Der Inkugelradius r eines Tetraeders mit Kantenlänge a ist
- $ r={\frac {\sqrt {6}}{12}}\cdot a. $
Dies lässt sich nach a umstellen
- $ a=2{\sqrt {6}}\cdot r. $
Das Volumen $ V_{T} $ des Tetraeders ist dann durch die Formel
- $ V_{T}={\frac {\sqrt {2}}{12}}\cdot a^{3}={\sqrt {192}}\cdot r^{3} $
gegeben.
Will man statt einer Kugel mehrere zu einem Tetraeder aufgeschichtete Kugeln in einen Tetraeder einbetten, so verlängert sich die Kantenlänge a des Tetraeders pro Schicht um das Doppelte des Kugelradius, das heißt, bei x Schichten ergibt sich eine Kantenlänge von
- $ a=2\cdot \left(x-1+{\sqrt {6}}\right)\cdot r. $
Setzt man dies wieder in die Volumenformel für das Tetraeder ein, so erhält man für das Volumen V der konvexen Hülle der aufgeschichteten Kugeln die Abschätzung:
- $ V<{\frac {2\cdot \left(x-1+{\sqrt {6}}\right)^{3}\cdot {\sqrt {2}}\cdot r^{3}.}{3}} $
Setzt man nun die Formel für die Anzahl der Kugeln bei n Schichten in die Formel für das Volumen $ V_{W} $ der Hülle einer Wurstpackung ein, erhält man das von der Wurstpackung eingenommene Volumen
- $ V_{W}={\frac {x\cdot (x+1)\cdot (x+2)-2}{3}}\cdot \pi r^{3}, $
das sich nun mit der Abschätzung für das Volumen der Tetraederpackung vergleichen lässt. Für x=13, also n=455 Kugeln ist der Vorfaktor für die Abschätzung der Tetraederpackung kleiner als 2845, während der Vorfaktor für das Volumen der Wurstpackung größer als 2856 ist. Dies beweist, dass für 455 Kugeln die Tetraederpackung dichter als die Wurstpackung ist.
Mit etwas mehr Aufwand lässt sich statt der Abschätzung für V auch die exakte Formel berechnen. Dazu muss nur das überschüssige Volumen an den Ecken und Kanten des Tetraeders abgezogen werden. Dies lässt dann auch für kleinere x und damit kleinere zugehörige Kugelzahlen n den Nachweis zu, dass die Wurstpackung nicht die optimale Packung darstellt.
Wurstvermutung
Die Bezeichnung Wurst stammt vom Mathematiker László Fejes Tóth, der 1975 die Wurstvermutung aufstellte.[3] Die optimale Anordnung von Kugeln kann man in beliebigen Dimensionen untersuchen. Kugeln, konvexe Hüllen sowie Volumina können in jedem euklidischen Raum mit mehr als einer Dimension formuliert werden. Der verallgemeinerte Begriff der Kugel bezeichnet dann einen n-dimensionalen Körper, bei dem alle Randpunkte gleich weit von seinem Mittelpunkt entfernt sind, wobei n die jeweilige Anzahl der Raumdimensionen bezeichnet. Die Wurstvermutung von Fejes Tóth besagt, dass ab einer Dimension von 5 die Anordnung von Kugeln entlang einer Geraden immer die Beste ist. Demnach würde die Wurstkatastrophe in einem Raum mit mehr als 4 Dimensionen nicht mehr auftreten. Ob dies tatsächlich stimmt, ist noch unbewiesen. Das beste Resultat hierzu stammt von Ulrich Betke und Martin Henk.[4] Sie bewiesen 1998, dass ab einer Dimension von 42 die Wurstvermutung tatsächlich gilt. Ab dem 42-dimensionalen Raum ist die Wurst also immer die dichteste Anordnung, und die Wurstkatastrophe tritt nicht ein. Im zweidimensionalen Raum ist nach J. M. Wills[5] die optimale Anordnung immer ein Cluster.
Interessanterweise scheint in drei Dimensionen die optimale Packung immer entweder eine Wurst oder ein Cluster, aber niemals eine Pizza zu sein. Auch diese Tatsache scheint in höheren Dimensionen zu gelten. Es wird vermutet, dass eine optimale Anordnung immer „extreme“ Dimensionen aufweist. Entweder liegen die Kugelmittelpunkte auf einer Linie (eindimensional) oder sie sind allgemein in einem n-dimensionalen Cluster angeordnet.
Methoden und Schwierigkeiten
Es lässt sich zwar beweisen, dass die Wurstpackung für 56 Kugeln nicht optimal ist, und es lässt sich auch eine bessere Packung angeben. Wie die optimale Packung aussieht, ist aber nicht bekannt, auch wenn Vermutungen darüber existieren. Es ist aber schwierig zu zeigen, dass keine bessere Packung existiert, da dies ein Argument über alle möglichen Packungen darstellt. Die Schwierigkeiten liegen schon darin begründet, dass es keine „einfache“ Formel für das Volumen eines Clusters gibt. Die Optimalität (oder auch Nichtoptimalität) wird durch geeignete Abschätzungen des Volumens gezeigt. Die Methoden dafür kommen aus der Konvexgeometrie. Stichworte dazu sind Brunn-Minkowski-Ungleichung, gemischtes Minkowski-Volumen und Formel von Steiner.
Endliche Kreispackungen
Verschiedene solcher Problemstellungen, z.B. von Kreispackungen auf Kugeloberflächen oder in Quadraten, wurden bearbeitet. Symmetriefreie dichteste Packungen von $ n $ kongruenten Kreisen in Quadraten konnten für $ n>10 $ nur mit Computerhilfe gefunden werden. Grundlegend für die Optimalitätsbeweise war die Arbeit eines Teams um R. Peikert an der ETH Zürich[6].
Für den Fall $ n=10 $ gibt es im Einheitsquadrat bis auf Kongruenz nur eine dichteste Packung; diese ist symmetriefrei und wurde von K. Schlüter-Schmidtke 1976 ohne Computerhilfe gefunden.
Literatur
Populärwissenschaftlich
- Max Leppmeier: Kugelpackungen und Wurstkatastrophen oder zur Theorie der finiten und infiniten Packungen. In: A. Beutelspacher u.a. (Hrsg.), „Überblick Mathematik 1996/1997“, Braunschweig/Wiesbaden 1997, ISBN 3528068922
- Max Leppmeier: Kugelpackungen von Kepler bis heute. Braunschweig/Wiesbaden 1997, ISBN 3528067926
Fachaufsätze
- ↑ 1,0 1,1 Pier Mario Gandini, Jörg Michael Wills: On finite sphere-packings. In: Math. Pannonica 3, Nr. 1, 1992, S. 19–20
- ↑ Jörg Michael Wills: Spheres and sausages, crystal and catastrophes – and a joint packing theory. In: Math. Intelligencer. 20, No. 1, 1998 S. 16–21
- ↑ László Fejes Tóth: Research Problem 13. In: Period. Math. Hungar. Bd. 6, 1975, S. 197–199
- ↑ Ulrich Betke, Martin Henk: Finite Packings of spheres. In: Discr. Comput. Geom Bd. 19, 1998, S. 197–227
- ↑ J. M. Wills, "Finite Sphere Packings and Sphere Coverings". Proceedings of the Geometry Conference in Cagliari, May 1992 (on-line PDF)
- ↑ (vgl. http://graphics.ethz.ch/~peikert/papers/elemente.pdf)
Fachbücher
- U. Betke, M. Henk, J. Wills: (In)Finite packings. Verlag Vieweg, ISBN 3-528-06797-7
- L. Fejes Tóth Reguläre Figuren Verlag der ungarischen Akademie der Wissenschaften Budapest
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen. |