Robert B. Woodward

Erweiterte Suche

Robert Burns Woodward (* 10. April 1917 in Boston, Massachusetts, USA; † 8. Juli 1979 in Cambridge, Mass.) war ein amerikanischer Chemiker und Nobelpreisträger. Sein Fachgebiet war die organische Chemie.

Robert B. Woodward, Cambridge (Mass) 1965

Leben

Woodward wurde 1917 in Boston als einziges Kind des englischen Immigranten Arthur Woodward und der gebürtigen Schottin Margarett Burns geboren. 1938 heiratete er Irja Pullman, mit der er zwei Töchter hatte, 1946 Eudoxia Muller. Aus dieser Ehe gingen ein Sohn und eine Tochter hervor.

Wissenschaftliche Laufbahn

Woodward entwickelte schon mit 12 Jahren eine erste Chininsynthese. Von 1933 bis 1937 studierte er Chemie am Massachusetts Institute of Technology in Cambridge/Massachusetts und schloss dort 1937 (20-jährig) mit der Promotion ab. Anschließend arbeitete er kurzzeitig an der Universität Illinois. Im selben Jahr wechselte er an die Harvard University; zunächst als Postdoktorand und ab 1944 Assistant Professor.[1] 1950 wurde er dort Full Professor und blieb dort bis zu seinem Lebensende. Seit 1963 leitete er darüber hinaus das von der Ciba-Geigy AG finanzierte Woodward Forschungsinstitut in Basel, Schweiz.[2]

Für seine wissenschaftlichen Arbeiten wurde Woodward mit zahlreiche Ehrendoktoraten, Ehrenmitgliedschaften und Preisen ausgezeichnet, darunter 1965 der Nobelpreis für Chemie und 1978 die Copley Medal der Royal Society.

Wissenschaftliche Bedeutung

Woodward war einer der bedeutendsten Naturstoffsynthetiker des 20. Jahrhunderts. Woodward setzte als erster Chemiker systematisch physikalische Methoden, wie UV- und IR-Spektroskopie, zur Strukturaufklärung organischer Verbindungen ein. Eine andere bedeutende Leistung war die Anwendung der Elektronentheorie bei Reaktionsmechanismen zur Lösung struktureller und synthetischer Probleme.

Sehr komplexe Naturstoffsynthesen von organischen Molekülen stellten damals noch Neuland dar. Auf der Basis seiner hervorragenden Synthesen von Naturstoffen zwischen 1937 - 1950 folgten später viele weitere Wissenschaftler und bauten dieses Gebiet aus. Seine Synthesen plante er sehr sorgfältig, nutzte dabei in besonderer Weise als einer ersten US-Chemiker die stereochemische und räumliche Konfiguration der Moleküle und verwendete Schutzgruppen. Er erkannte die Vorteile der Diels-Alder-Reaktion für stereoselektive Synthesen (z. B. Reserpin, Östron) sowie die Bedeutung der Claisen-Umlagerung, in der Folge entwickelte er aus diesen Erkenntnissen die Woodward-Hoffmann-Regeln.

1965 wurde er mit dem Nobelpreis für Chemie für seine Arbeiten zur Synthese von Naturstoffen ausgezeichnet. Unter anderem forschte er zu Antibiotika und entwickelte Totalsynthesen von Chinin, Cholesterin, Cortison, Strychnin, Lysergsäure, Reserpin, Chlorophyll, Colchicin, Östron, Tetracyclin, Erythromycin, Prostaglandin sowie zusammen mit Albert Eschenmoser in den Jahren 1960 bis 1972 Vitamin B12.

Ebenfalls 1965 entwickelte er zusammen mit seinem Mitarbeiter Roald Hoffmann die Woodward-Hoffmann-Regeln, die die Stereochemie der Produkte bestimmter organischer Reaktionen erklären. Für diese Arbeiten bekam Hoffmann 1981 den Chemie-Nobelpreis. Zahlreiche akademische Schüler von Robert B. Woodward erlangten einflussreiche akademische Positionen in der ganzen Welt. Darüber hinaus wurde er zu einem Mitglied der Deutschen Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften, gewählt.

Literatur

  • J. A. Berson: Chemical Creativity – Ideas from the Work of Woodward, Hückel, Meerwein, and Others. Wiley-VCH, Weinheim 1999, ISBN 978-3-527-29754-2.
  • Desmond M. S. Wheeler: R. B. Woodward und die moderne organische Chemie, Chemie in unserer Zeit, 18. Jahrg 1984, Nr. 4, S. 109-119, ISSN 0009-2851.
  • George B. Kauffman: Robert B. Woodward: Organic Synthesizer par excellence – On the 25th Anniversary of His Death, Chem. Educator 2004, 9, 1−5.

Weblinks

 Commons: Robert Burns Woodward – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Einzelnachweise

  1. Winfried R. Pötsch, Annelore Fischer und Wolfgang Müller unter Mitarbeit von Heinz Cassenbaum: Lexikon bedeutender Chemiker, VEB Bibliographisches Institut Leipzig, 1988, S. 462, ISBN 3-323-00185-0.
  2. G. Wayne Craig: The Woodward Research Institute, Robert Burns Woodward (1917 – 1979) and Chemistry behind the Glass Door, Helvetica Chimica Acta 94 (2011) 923−946, DOI: 10.1002/hlca.201100077.

Die cosmos-indirekt.de:News der letzten Tage

22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.