Nichtleiter

Erweiterte Suche

Als Nichtleiter bezeichnet man in der Physik und der Technik einen Stoff, der keine oder eine praktisch unbedeutende elektrische Leitfähigkeit besitzt – ungefährer Grenzwert: kleiner als 10−10 S·cm−1.

Andere übliche Bezeichnungen für Nichtleiter sind, je nach Einsatzbereich, Isolator und Dielektrikum. Dabei ist zu beachten, dass der Begriff Isolator neben der hier beschrieben Materialeigenschaft auch ein isolierendes Bauteil bezeichnet, siehe Isolator. Dienen Nichtleiter zur Isolation von elektrischen Leitern, nennt man sie Isolierstoffe. Bestimmen die Isolierstoffe die elektrischen Eigenschaften von elektrischen oder elektronischen Bauteilen (z. B. Kondensatoren oder Koaxialkabel), bezeichnet man sie als Dielektrikum.

Physikalische Eigenschaften

Nichtleiter sind Stoffe, deren Elektronen fest an die Atome gebunden sind bzw. deren Ionen fest im Kristallgitter eingebaut sind. Dazu gehören die meisten Nichtmetalle sowie Kohlenwasserstoffe und viele andere organischen Verbindungen. Aufgrund der Vielfältigkeit der nichtleitenden Materialien ist daher eine allgemeingültige Beschreibung der physikalischen Eigenschaften außer der elektrischen Leitfähigkeit nicht möglich.

Wie beschrieben werden Materialien mit einer Leitfähigkeit im Bereich 10−10 bis 10−18 S·cm−1 zur Gruppe der Nichtleiter gezählt. Dieser Wert hat seine Ursache in der sehr kleinen Dichte freier elektrischer Ladungsträger (Elektronen und/oder Ionen). Am Beispiel eines nichtleitenden Festkörpers wie dem Diamant lässt sich dies am besten über das Energiebändermodell darstellen. Bei Nichtleitern ist das Valenzband voll besetzt. Da die „verbotene Zone“ (Energielücke zwischen Valenz- und Leitungsband) sehr groß ist (EG>3 eV), können keine Elektronen durch thermische Anregung ins Leitungsband wechseln. Auch bei stark erhöhten Temperaturen, bei denen die mittlere Energie der Elektronen theoretisch ausreichen würde um ins Leitungsband zu wechseln, tritt dies nicht ein. Eher kommt es zu Ionisationsprozessen, Verunreinigungen führen zu Verlusteffekten, oder das Material wird durch die thermische Belastung zerstört. In dieser Hinsicht unterscheiden sich Nichtleiter von Halbleitern. Auch Halbleiter besitzen eine „Verbotene Zone“, diese ist allerdings ausreichend klein, sodass Elektronen auch bei geringen Temperaturen vom Valenzband in das Leitungsband angeregt werden können und somit für den Ladungstransport zur Verfügung stehen. Der Grenzbereich zwischen Nichtleitern und Halbleitern liegt bei einer ungefähren Energielücke von drei Elektronenvolt.

Beispiele

Es gibt unzählige Beispiele für Nichtleiter, einer der bekanntesten Vertreter ist reiner Kohlenstoff in der Modifikation Diamant. Zahlreiche Kohlenstoffverbindungen sind Nichtleiter, beispielsweise Bernstein oder verschiedene Kunststoffe. Letztere werden unter anderem für die Isolation von Kabeln oder für Gehäuse verwendet. Weitere Nichtleiter sind Keramikwerkstoffe, Glas oder auch Silikone.

Nichtionisierte, trockene Gase, wie Argon, Sauerstoff oder auch normale trockene Luft, sind ebenfalls Nichtleiter. Generell ist die Anwesenheit von Wasser für viele natürliche Stoffe bzw. Stoffgemische (z. B. Holz), die den elektrischen Strom von sich aus nicht leiten, dafür verantwortlich, dass diese leitend werden. Denn destilliertes oder deionisiertes Wasser gilt zwar als Isolator, da aber immer einige Wassermoleküle dissoziiert sind, stehen Ionen zur Verfügung, die den elektrischen Strom leiten und Wasser zu einem schlechten Isolator machen. Bei normalem Leitungswasser oder Wasser in Seen kommen noch die gelösten Salze (Metall- und Nichtmetallionen) usw. dazu. Diese erhöhen die Leitfähigkeit enorm und machen Wasser dadurch zu einem Leiter.

Salze im festen Zustand sind – trotz ihres Ionenaufbaus – meist Nichtleiter. Die Bindungskräfte zwischen den Ionen sind zu groß, als dass sich einzelne Ionen frei bewegen könnten. Werden Salze geschmolzen, ändert sich das. Die Ionen sind nun nicht mehr so fest an ihren Nachbarionen gebunden und so können Salzschmelzen den elektrischen Strom durch Ionenleitung transportieren.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

12.10.2021
Kometen und Asteroiden
Lerne die 42 kennen: Einige der größten Asteroiden fotografiert
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile haben Astronom:innen 42 der größten Objekte im Asteroidengürtel zwischen Mars und Jupiter abgelichtet.
06.10.2021
Elektrodynamik | Festkörperphysik
Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
05.10.2021
Festkörperphysik | Quantenphysik
Neue Art von Magnetismus in Kult-Material entdeckt
Ein internationales Wissenschaftsteam macht eine wegweisende Entdeckung in Strontiumruthenat.
30.09.2021
Kometen_und_Asteroiden | Planeten
Bombardement von Planeten im frühen Sonnensystem
Vesta, der größte Asteroid unseres Sonnensystems, war sehr viel früher einer umfangreichen Einschlagserie großer Gesteinskörper ausgesetzt als bislang angenommen.
30.09.2021
Plasmaphysik | Teilchenphysik
Strahldiagnostik für zukünftige Beschleuniger im Tischformat
Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer - Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren.
24.09.2021
Quantenoptik
Winzige Laser, die wie einer zusammenwirken
Israelische und deutsche Forscher:innen des Exzellenzclusters ct.
23.09.2021
Teilchenphysik
Den Geheimnissen eines exotischen Kerns auf der Spur
Berechnungen des exotischen, experimentell schwer zugänglichen Kerns Zinn-100 mit neuesten ab-initio theoretischen Methoden liefern verlässliche Ergebnisse.
23.09.2021
Monde
Mond: Scharfer Blick in dunkle Krater
Dauerhaft verschattete Mondkrater enthalten Eis, lassen sich jedoch nur schlecht ablichten.
22.09.2021
Schwarze_Löcher | Astrophysik
Wie man einen Quasar wiegt
Astronomen haben erstmalig erfolgreich eine neue Methode zur Bestimmung der Massen von schwarzen Löchern in Quasaren erprobt.
22.09.2021
Quantenphysik
Quantenkryptographie-Rekord mit höherdimensionalen Photonen
Quantenkryptographie ist eine der erfolgversprechendsten Quantentechnologien unserer Zeit.