Kelvin-Sonde

Erweiterte Suche

Die Kelvin-Sonde (englisch Kelvin probe, KP) findet bei der zerstörungsfreien Messung der Austrittsarbeit und bei der Untersuchung von Delaminierungsprozessen an Polymer-, Oxid-, und Metall-Grenzflächen Verwendung. [1] Die Kombination einer Kelvin-Sonde mit einem Rasterkraftmikroskop wird als Raster-Kelvin-Mikroskop oder Kelvinsondenkraftmikroskop (engl. scanning Kelvin probe microscope, SKPM, oder Kelvin probe force microscope, KPFM) bezeichnet.

Der Name der Kelvin-Sonde geht auf Lord Kelvin zurück.[2]

Prinzip

Messaufbau

Werden zwei Metalle in Kontakt gebracht, so fließen energiereichere Elektronen vom Metall höheren Ferminiveaus zu jenem mit geringerem Ferminiveau, bis diese auf gleicher Höhe liegen (vgl. Kontaktpotential). Aus diesem Elektronenfluss entsteht ein elektrisches Feld und eine Kontaktspannung $ \Delta \varphi $. Die Kontaktspannung $ \Delta \varphi $ resultiert aus der Austrittsarbeitsdifferenz:

$ \Delta W = e \cdot \Delta \varphi $

Die beiden Metalle haben gegeneinander eine Kapazität $ C $. Für die geflossene Ladung gilt:[3]

$ Q=C \cdot \Delta \varphi $.

Messung

Bei der Messung mit einer Kelvin-Sonde verhalten sich die leitfähige Sonde, die über der Probe mit Piezoaktoren in Schwingung versetzt wird, und die Probe wie zwei Kondensatorplatten.[4] Durch die Schwingung wird ein Strom $ i(t) $ influenziert, welcher linear von der Austrittsarbeitsdifferenz $ \Delta \varphi $ und nichtlinear vom Abstand zwischen Sonde und Probe abhängt. Durch eine externe Spannung $ U $ kann der Strom $ i(t) $ zu null geregelt werden. Dadurch ist die Austrittsarbeitsdifferenz bestimmt, denn es gilt $ U=\Delta \varphi $.

Der Aufbau eines KPFM ähnelt einem Rasterkraftmikroskop und kann eine bessere Ortsauflösung als die Kelvin-Sonde liefen. Als Sonde dient in diesem Fall eine sehr feine, leitfähige Spitze. Aufgrund der kleinen Geometrie der Spitze ist die Kapazität zwischen Spitze und Probe und somit auch der influenzierte Strom $ i(t) $ sehr klein. Mit einem Rasterkraftmikroskop ist jedoch die Messung kleinster Kräfte möglich. Daher wird bei diesem Aufbau statt des Stroms $ i(t) $ die elektrostatische Kraft zwischen Spitze und Probe gemessen. Durch Anlegen einer Spannung zwischen Spitze und Probe kann auch hier im Idealfall die Kraft eliminiert werden, so dass $ U=\Delta \varphi $ gilt.

Referenzen

  1. Universität Paderborn: Ausstattung
  2.  K. Lord: Contact electricity of metals. In: Phil. Mag. 46, 1898, S. 82–120.
  3. Herbert Kliem: Materialien der Mikroelektronik 1. Vorlesungsskript, WS2010/11.
  4.  K. Besocke, S. Berger: Piezoelectric driven Kelvin probe for contact potential difference studies. In: Review of Scientific Instruments. 47, Nr. 7, 1976, S. 840–842, doi:10.1063/1.1134750.

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?