Filamine (FLN) sind Proteine bei Eukaryoten und gehören zu den Aktin-bindenden Proteinen (ABP). Sie sind an der Quervernetzung von Aktinfilamenten, einem Hauptbestandteil des Zytoskeletts, sowie der Vernetzung von Aktinfilamenten mit Proteinen in der Zellmembran beteiligt. Indirekt spielen sie darüber hinaus eine wichtige Rolle bei Zell-Zell- und Zell-Matrixverbindungen, der Fortbewegung von Zellen (Zellmotilität) sowie bei der Entwicklung von Eukaryoten (Ontogenese). Mutationen in den für Filamin-B oder -C kodierenden Genen können seltene Erbkrankheiten verursachen.[1]

Nomenklatur

Die Nomenklatur war lange Zeit relativ uneinheitlich. Sehr viele verschiedene Namen beziehungsweise Abkürzungen können leicht zu Verwechslungen führen. Erst im Jahre 2001 wurde eine einheitliche Nomenklatur eingeführt.[1] Der Abkürzung FLN wird dabei immer ein Prefix vorangestellt, der darauf hinweist aus welchem Organismus das entsprechende Filamin isoliert wurde:

  • hs für Homo sapiens (Mensch)
  • gg für Gallus gallus (Bankivahuhn)
  • dm für Drosophila melanogaster (Schwarzbäuchige Taufliege)
  • dd für Dictyostelium discoideum (Art aus der Klasse der Schleimpilze)

Eine Übersicht über die verschiedenen Filamine bietet die folgende Tabelle: [2] [3]

Name Alte Bezeichnungen Anzahl der Einheiten
hsFLNa ABP, ABP280, FLN1 Non-muscle FLN, αFLN, Filamin A 24
hsFLNb βFLN, FH1, FLN3, Filamin B 24
hsFLNc γFLN, ABP-L, FLN2, Filamin C 24
ggFLNb FLN 24
ddFLN ABP120, Gelationsfaktor 6
dmFLN1-20 Filamin-240, Filamin1 20
dmFLN1-9 Filamin90 9
dmFLN2 20

Die Filamine des Menschen

Aufbau

Beim Menschen gibt es 3 verschiedene Filamine: Filamin A (α-Filamin), Filamin B (β-Filamin) und Filamin C (γ-Filamin). Sie bestehen aus 24 Wiederholungen, die jeweils von etwa 96 Aminosäuren gebildet werden. Am carboxyterminalen (C-terminalen) Ende besitzen die Filamine eine flexible Gelenkregion, die sich in elektronenmikroskopischen Aufnahmen V- oder Y-förmig darstellt. Sie verleihen den Quervernetungen eine gewisse Flexibilität. Von den Filaminen A und B gibt es jeweils noch 2 Isoformen, jeweils eine mit oder ohne eine zweite Gelenkregion.

Funktionen

Die Funktionen der Filamine sind zahlreich und werden durch Verbindungen, hauptsächlich zwischen Aktin und Membranproteinen vermittelt. Es sind inzwischen mehr als 20 dieser Interaktionen bekannt. Bei den Membranproteinen handelt es sich häufig um Rezeptoren, die bei Bindung ihres Liganden, Signale in die Zelle weiterleiten (sog. Signalübermittlung). Die Verbindungen der Filamine werden über Signale gelöst oder neu gebildet und können dadurch zu einer Umorganisation des Zytoskeletts führen. Die Signalübertragung wird unter anderem durch Phosphorylierung und Dephosphorylierung vermittelt.

Ein Beispiel ist die Interaktion der Filamine A und B zwischen Aktin und einem Rezeptor, der unter anderem bei den Blutplättchen (Thrombozyten) vorkommt, der so genannte von-Willebrand-Faktor-Rezeptor. Er spielt eine wichtige Rolle bei der Initiation der Blutgerinnung. Bindet der Rezeptor seinen Liganden, den von-Willebrand-Faktor dann kommt es unter anderem durch diese Verbindung zu einer Aktivierung der Blutplättchen und zu einer Umorganisation des Zytoskeletts. Ein weitere Rezeptor, der bei der Blutgerinnung eine Rolle spielt und mit Filamin interagiert, ist der Rezeptor für den Thromboplastin.

Des Weiteren können über die Interaktion mit zahlreichen Integrinen Zell-Zell- und Zell-Matrix-Verbindungen gelöst oder gebildet werden. Integrine binden beispielsweise außerhalb der Zelle an Strukturen des Bindegewebes, wie Kollagen und Filamin. Sie tragen damit zur Stabilität von Zellverbänden bei.

Filamin C besitzt eine spezifische Aminosäuresequenz, die mit der Z-Scheibe der Aktinfilamente in Muskelzellen interagiert. Dies führt zu einer Quervernetzung der Muskelfibrillen und trägt damit zu einer Stabilisierung bei.

Medizinische Bedeutung

Mutationen in den Genen, die für die Filamine kodieren, können zu zahlreichen, insgesamt aber seltenen Erkrankungen führen.

Mutationen im Filamin C-Gen (FLNC) sind beispielsweise die Ursache der Filaminopathie, einer Form der myofibrillären Myopathien (MFM). MFM sind eine klinisch und genetisch heterogene Gruppe von Muskelerkrankungen, die durch eine fokale Auflösung von Muskelfibrillen sowie durch die abnorme Ansammlung und Zusammenlagerung von diversen Proteinen in den Muskelfasern der Patienten charakterisiert sind. Alle bisher beschriebenen FLNC-Mutationen betreffen die Dimerisierungsdomäne. Für die p.W2710X-Mutation, die zu einer Deletion der carboxyterminalen 16 Aminosäuren in Domäne 24 führt, konnte gezeigt werden, dass hierdurch die Dimerisation gestört wird und die mutierten Filaminmoleküle sich stattdessen zusammenlagern und Aggregate bilden. Ferner ist das mutierte Filamin C instabiler und anfälliger für die Proteolyse. Klinisch führt die Filaminopathie zu einer langsam fortschreitenden Muskelschwäche, die bevorzugt die stammnahe Muskulatur betrifft. Eine häufige und ernste Komplikation stellt die Ateminsuffizienz infolge der Beteiligung der Atemmuskulatur dar.

Literatur

  • M. Knuth: Identifizierung und Charakterisierung von FIP, einem neuen Filamin-bindenden Protein Dissertation von 2001.
  • U. Tigges: Charakterisierung der Interaktion zwischen dem Strukturprotein Filamin und der Proteinkinase C α. Dissertation von 2003.
  • Vorgerd M, van der Ven PF, Bruchertseifer V, Löwe T, Kley RA et al. A mutation in the dimerization domain of filamin C causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 2005;77(2):297-304; PMID 15929027.
  • Löwe T, Kley RA, van der Ven PF, Himmel M, Huebner A, Vorgerd M, Fürst DO. The pathomechanism of filaminopathy: altered biochemical properties explain the cellular phenotype of a protein aggregation myopathy. Hum Mol Genet 2007;16(11):1351-1358; PMID 17412757.
  • Kley RA, Hellenbroich Y, van der Ven PFM, Fürst DO, Hübner A et al. Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Brain 2007;130:3250-3264; PMID 18055494.

Einzelnachweise

  1. 1,0 1,1 Stossel T.P. et al.: Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001 Feb;2(2):138-45. PMID 11252955
  2. M. Knuth: Identifizierung und Charakterisierung von FIP, einem neuen Filamin-bindenden Protein Dissertation von 2001. PDF-Version
  3. U. Tigges: Charakterisierung der Interaktion zwischen dem Strukturprotein Filamin und der Proteinkinase C α. Dissertation von 2003. PDF-Version