Enantiomerenüberschuss

Schematische Darstellung eines 40 %-igen Enantiomerenüberschusses (ee = 40 %).

Der Enantiomerenüberschuss, oder kurz ee-Wert (von englisch: enantiomeric excess), gibt den Überschuss eines Enantiomers in einem Gemisch an.[1] Er ist definiert als

$ ee = \frac{|m_1 - m_2 |}{m_1 + m_2}\cdot 100% $

mit $ m_1 $: Masse des Enantiomers 1, $ m_2 $: Masse des Enantiomers 2.

Bei einem Racemat (1:1-Gemisch der Enantiomere 1 und 2) ist demnach ee= 0 %, bei einer enantiomerenreinen Verbindung ist ee = 100 %.

Oft bedeutet in der Praxis ein bestimmter Enantiomerenüberschuss, dass bei einer Messung des Drehwertes einer optisch aktiven Substanzlösung nur der entsprechende Prozentsatz des theoretischen Drehwertes der enantiomerenreinen Lösung gemessen wird. Genaugenommen wird über den Drehwert aber die sogn. optische Reinheit (englisch: op von optical purity) gemessen. Verunreinigungen der untersuchten Substanzprobe mit Nebenprodukten (egal ob achiral oder enantiomerenrein) können dazu führen, dass die optische Reinheit nicht mit dem Enantiomerenüberschuss übereinstimmt. Es kann dabei sowohl ein höherer als auch ein niedrigerer Enantiomerenüberschuss vorgetäuscht werden, als tatsächlich vorhanden ist.

Der Begriff Enantiomerenüberschuss wurde 1971 durch Morrison und Mosher geprägt.[2] Heutzutage wird der Begriff Enantiomerenüberschuss ee zunehmend durch den Begriff Enantiomerenverhältnis (englisch enantiomeric ratio, er) ersetzt, dabei wird ein Enantiomerengemisch charakterisiert durch das Mengenverhältnis [S]:[R] oder [R]:[S].[3]

Beispielsweise kann bei Massenanteilen der Enantiomere von 70 % zu 30 % je 30 Prozentpunkte der Enantiomere als racemisches Gemisch und der Rest des überschüssigen Enantiomers rein vorliegen, was einen 40%igen Enantiomerenüberschuss (40 % ee) für das Enantiomerengemisch bedeutet. Das Enantiomerenverhältnis wäre in diesem Beispiel er = 7:3.

Siehe auch

Einzelnachweise

  1. Reinhard Brückner: Reaktionsmechanismen, Spektrum Akademischer Verlag, 3. Auflage, 2004, S. 110, ISBN 978-3-8274-1579-0.
  2. Morrison, James D.; Mosher, Harry S.: Asymmetric Organic Reactions, Prentice-Hall, Englewood Cliff, New Jersey, 1971 (ISBN 0130495514).
  3. Robert E. Gawley: Do the Terms "% ee" and "% de" Make Sense as Expressions of Stereoisomer Composition or Stereoselectivity? J. Org. Chem. 71 (2006) 2411 - 2416; doi:10.1021/jo052554w.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.