Elektromagnetischer Feldstärketensor

Erweiterte Suche

Der elektromagnetische Feldstärketensor (auch Faraday-Tensor oder einfach Feldstärketensor) ist eine physikalische Größe, die in der Elektrodynamik das elektromagnetische Feld als Feld in der Raumzeit beschreibt. Er wurde 1908 von Hermann Minkowski im Rahmen der Relativitätstheorie eingeführt. Die aus Physik und Technik bekannten vektoriellen Feldgrößen wie elektrische und magnetische Feldstärke lassen sich aus dem Feldstärketensor ableiten. Die Bezeichnung Tensor für die Art dieser Größe ist eine Abkürzung, tatsächlich handelt es sich um ein Tensorfeld, also einen von Punkt zu Punkt variierenden Tensor.

Definition

Der elektromagnetische Feldstärketensor ist gewöhnlich definiert durch das Vektorpotential:

$ \,F^{\mu\nu}=\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} $

z. B. mit dem klassischen Vektorpotential

$ A^{\mu} = \left(\phi/c, \vec A\right) $

Die obige Definition ist auch für die Quantenelektrodynamik gültig. Dort ist einfach nur das Vektorpotential operatorwertig. Es handelt sich um einen Spezialfall der Feldstärketensor-Definition einer allgemeinen Eichtheorie.

Eigenschaften und Formeln

Der Feldstärketensor besitzt folgende Eigenschaften:

  • $ F^{\mu\nu} $ ist antisymmetrisch: $ F^{\mu\nu} = -F^{\nu\mu} $
  • Verschwindende Spur: $ F^{\mu\mu} = 0 $
  • 6 freie Komponenten

Hier einige häufig auftretenden Kontraktionen:

In der Lagrangedichte tritt dieser Lorentz-invariante Term auf:

$ F_{\alpha\beta} F^{\alpha\beta} = \ 2 \left( B^2 - \frac{E^2}{c^2} \right) $

Von Interesse ist auch die mit dem Levi-Civita-Symbol gebildete, pseudoskalare Invariante:

$ \epsilon_{\alpha\beta\gamma\delta}F^{\alpha\beta} F^{\gamma\delta} = \frac{8}{c} \left( \vec B \cdot \vec E \right) $

Mit der Konvention $ \ \epsilon_{0123} \, $ = +1.

In einigen Rechnungen kommt auch diese Größe vor:

$ \det \left( F \right) = \frac{1}{c^2} \left( \vec B \cdot \vec E \right) ^{2} $

Der Energie-Impuls-Tensor $ T^{\,\mu\nu} $ der allgemeinen Relativitätstheorie für das elektromagnetische Feld wird aus $ F^{\,\alpha\beta} $ gebildet:

$ T^{\alpha\beta}= F^{\alpha\gamma} F_{\gamma}^{\;\;\beta}-\frac{1}{4}g^{\alpha\beta} F_{\mu\nu}F^{\nu\mu} $

Darstellung als Matrix

Die Matrixdarstellung des Feldstärketensors ist koordinatenabhängig. In einer flachen Raumzeit (also mit Minkowski-Metrik) und kartesischen Koordinaten kann der kontravariante Feldstärketensor geschrieben werden als:

$ F^{\mu\nu} = \left(\begin{matrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \\ \end{matrix}\right) $

(Diese Matrix wird gelegentlich ebenfalls kurz als Tensor bezeichnet, ist aber nicht der Tensor selbst).

Inhomogene Maxwellgleichungen in kompakter Formulierung

Es ist gebräuchlich, auch den dualen elektromagnetischen Feldstärketensor zu definieren:

$ \tilde{F}^{\mu\nu} := \frac{1}{2}\, \varepsilon^{\mu\nu\alpha\beta}\,F_{\alpha\beta} \quad \Rightarrow \quad \tilde{F}^{\mu\nu} = \left[\begin{matrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z/c & -E_y/c \\ B_y & -E_z/c & 0 & E_x/c \\ B_z & E_y/c & -E_x/c & 0 \\ \end{matrix}\right] $

wobei $ \,F_{\alpha\beta} $ der kovariante Feldstärketensor ist.

Damit lassen sich sowohl die homogenen, als auch die inhomogenen Maxwellgleichungen kompakt aufschreiben:

$ \partial_{\mu} F^{\mu\nu} = \mu_0 j^{\nu} \qquad \partial_{\mu} \tilde{F}^{\mu\nu} = 0 $

wobei der folgende Viererstrom verwendet wurde:

$ j^{\mu} = \left(c \rho, \vec j \right) $

Darstellung in Differentialformschreibweise

Im Folgenden wird das CGS-System verwendet, um die fundamentalen Zusammenhänge klarer herauszuarbeiten.

Der Feldstärketensor $ F $ ist eine Differentialform zweiter Stufe auf der Raumzeit. Die maxwellschen Gleichungen lauten in Differentialformschreibweise $ \ast \mathrm{d} F = j_\mathrm{mag} $ und $ \ast \mathrm{d} \ast \mathrm F = j $ mit der magnetischen Stromdichte $ j_\mathrm{mag} $ und der elektrischen Stromdichte $ j $, beide als 1-Formen wiederum auf der Raumzeit.

Da in der Regel von der Abwesenheit magnetischer Ladungen ausgegangen wird, ist $ \mathrm dF=0 $, und der Feldstärketensor kann somit als Ableitung $ F = \mathrm{d} A $ einer 1-Form $ A $ dargestellt werden. $ A $ entspricht dem raumzeitlichen Vektorpotential. Bei Anwesenheit magnetischer Ladungen nimmt man ein weiteres Vektorpotential hinzu, dessen Quelle die magnetische Stromdichte ist.

Beispiel: Der Feldstärketensor einer Punktladung $ q $ ist $ F = q \mathrm{d}t \and \mathrm{d}r $ mit dem Abstand $ r $ von der Ladung in deren Ruhesystem (Voraussetzungen sind gleichförmige Bewegung und Abwesenheit von Raumkrümmung).

Die 4-Form $ \tfrac{1}{2} F \and * F $ ist die Lagrange-Dichte des elektromagnetischen Feldes.

Ableitung der vektoriellen Feldgrößen

Relativ zur Bewegung eines Beobachters durch Raum und Zeit kann der Feldstärketensor in einen elektrischen und einen magnetischen Anteil zerlegt werden. Der Beobachter nimmt diese Anteile als elektrische beziehungsweise magnetische Feldstärke wahr. Unterschiedliche zueinander bewegte Beobachter können daher unterschiedliche elektrische oder magnetische Feldstärken wahrnehmen.

Beispiel: Wird in einem elektrischen Generator relativ zu einem „magnetischen“ Feld ein Draht bewegt, dann hat der Feldstärkentensor bei Zerlegung relativ zur Drahtbewegung und somit aus Sicht der im Draht enthaltenen Elektronen auch einen elektrischen Anteil, der für die Induktion der elektrischen Spannung verantwortlich ist.

In flacher Raumzeit (Minkowski-Raum) lassen sich die Vektorfelder $ \vec{E} $ und $ \vec{B} $ aus der Koordinatendarstellung $ F = \tfrac{1}{2} F_{\mu\nu} \mathrm{d}x^\mu\and\mathrm{d}x^\nu $ des Feldstärketensors ablesen: man erhält die obige Matrixdarstellung. Eine allgemeingültigere Beziehung ergibt sich aus der Zerlegung $ F = u \and E + \ast(u \and B) $, wo $ u $ einem zeitartigen und $ E $, $ B $ raumartigen Vektorfeldern entsprechen.[1]

Auftreten in der Quantenelektrodynamik

Der Feldstärketensor tritt direkt in der QED-Lagrangedichte (hier ohne Eichfixierungsterme) auf:

$ \mathcal{L}_\mathrm{QED}=\bar{\psi}\left[ i\gamma_{\mu}D^{\mu}-m\right] \psi -\frac{1}{4}F_{\mu\nu }F^{\mu \nu } $

Literatur

  • J. D. Jackson: Klassische Elektrodynamik. de Gruyter, 2002, ISBN 3-1101-6502-3.
  • C. Misner, K. S. Thorne, J. A. Wheeler: Gravitation. W. H. Freeman, San Francisco 1973, ISBN 0-7167-0344-0.
  • Torsten Fließbach: Allgemeine Relativitätstheorie. Spektrum Akademischer Verlag, 2003, ISBN 3-8274-1356-7.

Quellen

  1. Sylvan A. Jacques: Relativistic Field Theory of Fluids.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?