DNA-Reparatur
Übergeordnet | ||
DNA-Metabolismus | ||
Untergeordnet | ||
Einzelstrangbruch-Reparatur Doppelstrangbruch-Reparatur Postreplikations-Reparatur Virale DNA-Reparatur mitochondrielle DNA-Reparatur Pyrimidindimer-Reparatur Basen-Exzisionsreparatur Nukleotid-Exzisionsreparatur | ||
Gene Ontology | ||
---|---|---|
QuickGO |
Durch Mechanismen der DNA-Reparatur können Zellen Veränderungen ihrer DNA-Struktur beseitigen. Solche Schäden in der DNA können spontan im Verlauf der DNA-Replikation oder durch die Einwirkung mutagener Substanzen, extremer Wärme oder ionisierender Strahlung verursacht werden.
DNA-Schäden können dazu führen, dass die Replikation der DNA für die Mitose falsch erfolgt, Proteine nicht mehr bzw. falsch synthetisiert oder wichtige Chromosomenbereiche nach Doppelstrangbrüchen abgespalten werden.
Bringen die komplexen Reparaturmechanismen der Zelle keinen Erfolg, so sammeln sich in wachsenden und ruhenden somatischen Zellen so viele Fehler an, dass die normalen Zellfunktionen gestört sind. In einer Keimzelle wären die Tochterzellen nicht mehr lebensfähig, was zu einer Inaktivierung der Zelllinie führt: die Zelle bzw. die zweite bis dritte nachfolgende Generation verliert ihre Teilungsfähigkeit und stirbt. Im Zuge der Zellzykluskontrolle können Kontrollproteine eine Zelle bzw. deren DNA als defekt erkennen und einen Zyklusarrest (G0-Phase) oder den programmierten Zelltod (Apoptose) einleiten.[1]
Ursachen von DNA-Schäden
Mögliche Ursachen sind Stoffwechselvorgänge, chemische Substanzen oder Ionisierende Strahlung, wie zum Beispiel UV-Strahlung, Elektronen oder Protonen.
Stoffwechselvorgänge
Eine Zelle ist ein System im Fließgleichgewicht. Sie nimmt fortwährend Moleküle auf, verarbeitet sie, synthetisiert benötigte Stoffe, und gibt wiederum bestimmte Stoffe an die Umgebung ab. Beim normalen zellulären Metabolismus können reaktive Sauerstoffspezien (ROS, unter anderem Sauerstoffradikale) entstehen, welche ein signifikantes Ausmaß an oxidativen Schaden anrichten. Am häufigsten sind dies Basenschäden und Einzelstrangbrüche, weniger als 0,5 % sind Doppelstrangbrüche, welche auch noch relativ gleichförmig über die DNA verteilt sind. Die Wahrscheinlichkeit endogen induzierter Schadenscluster und damit – schwierig zu reparierender – gehäufter Läsionen (complex lesions), wie sie sonst durch die nicht-homogene Energieabgabe ionisierender Strahlen auftreten, ist sehr gering. Eine zu hohe Protonendichte und/oder zu hohe Temperatur kann Depurinierungen oder Depyrimidierung auslösen.
UV-Strahlung
Durch die UV-Strahlung kann es zu direkten Veränderungen (Mutationen) der DNA kommen, wobei diese insbesondere UV-B-Strahlung absorbiert. Einzelsträngige DNA zeigt ihr Absorptionsmaximum bei 280 nm. Sowohl UV-B als auch UV-A können indirekt die DNA durch die Entstehung von reaktiven Sauerstoffradikalen schädigen, die die Entstehung von Oxidativen DNA-Läsionen bewirken, die wiederum zu Mutationen führen. Diese sind vermutlich für die Entstehung von UV-A-induzierten Tumoren verantwortlich.[2]
Arten von DNA-Schäden
- Basenmodifikationen
- Pyrimidindimere in der Regel 6–4-Photoprodukte (6-4PPs) oder Cyclobutan-Pyrimidindimere (CPDs)
- oxidierte Basen beispielsweise 8-Oxo-7,8-Dihydroguanin (8-oxoG) oder 8-Oxo-7,8-Dihydroadenin (8-oxoA)
- alkylierte Basen (z.B. Basenmethylierungen)
- andere Bulky lesions (sperrige Basenveränderungen)
- Basenfehlpaarungen durch fehlerhafte Replikation (Mismatch)
- Basenverlust – Apurinierungen oder Apyrimidierungen (AP sites)
- Veränderungen des Zuckergerüsts
- DNA-Protein-Vernetzungen (DNA protein crosslinks)
- DNA-DNA-Verknüpfungen (DNA crosslinks)
- Einzelstrangbrüche (ss breaks)
- Doppelstrangbrüche (ds breaks)
Die Behandlung mit einem Gray Röntgenstrahlung erzeugt pro Zelle etwa [3]
- 1000–2000 Basenmodifikationen
- 500–1000 Einzelstrangbrüche
- 800–1600 Veränderungen des Zuckergerüsts
- 150 DNA-Protein-Vernetzungen
- 50 Doppelstrangbrüche
Reparatur von DNA-Schäden
Basenexzisionsreparatur (BER)
Bei der Basenexzisionsreparatur wird ein Fehler in der Basenpaarung eines der beiden DNA-Stränge behoben. Dabei werden Schäden an den Basen durch eine jeweils spezifische DNA-Glykosylase erkannt. Diese wandert entlang der kleinen Furche und klappt die einzelnen Basen in ihr katalytisches Zentrum. Eine beschädigte Base wird von der DNA-Glykosylase entfernt, danach wird durch eine AP-Endonuklease (A-Purin-A-Pyrimidin-Endonuklease) ein Einzelstrangbruch im Zucker-Phosphat-Rückgrat eingeführt. Eine DNA-Polymerase synthetisiert abhängig von der komplementären Base auf dem fehlerfreien Strang die korrekte Base. Eine DNA-Ligase verknüpft die neue Base im DNA-Strang, womit der Fehler korrigiert ist.
Nukleotidexzisionsreparatur (NER)
Es gibt zwei verschiedene Formen der Nukleotidexzisionsreparatur (NER). Zum einen Global Genome Repair (GGR), welche Schäden in transkriptionsinaktiven Bereichen der DNA behebt und zum anderen die sogenannte Transcription Coupled Repair (TCR), welche Schäden an der aktuell zu transkribierenden DNA behebt. Diese beiden Formen unterscheiden sich nur in der Schadenserkennung. Bei der GGR wird die DNA-Läsion vom Proteinkomplex XPC/HHR23B erkannt. Dagegen spielt dieser Komplex bei der TCR keine Rolle. Bei der TCR ist es von Bedeutung, dass die durch die Schädigung blockierte RNA Polymerase II entfernt wird, um so den TCR-Proteinen Zugriff zur DNA-Schädigung zu ermöglichen. Dieses Entfernen der RNA Polymerase II wird durch CSA und CSB ermöglicht. Die weiteren Schritte sind bei beiden Reparaturwegen identisch. XPA und RPA dienen zur weiteren DNA-Schadenserkennung und dirigieren die Helikasen XPB und XPD zur Läsion, welche die DNA unmittelbar in der Nähe der Schädigung entwinden. Die Endonukleasen XPG und XPF/ERCC1 schneiden den DNA-Strang mit der Schädigung in 3' und 5' Richtung, so dass ein 30 Basen umfassendes Oligonukleotid freigesetzt wird, welches die Schädigung enthält. Nun folgt die Polymerisation des fehlenden DNA-Abschnitts durch die DNA Polymerase β und weitere Faktoren. Als letztes erfolgt die Ligation des synthetisierten Abschnitts durch die DNA-Ligase I. Mutationen, welche die CSA/B Gene betreffen, führen zur Ausbildung des Krankheitsbildes Cockayne-Syndrom. Mutationen betreffend der XPA-XPG Familie führen zur Ausbildung des Krankheitsbildes Xeroderma pigmentosum.
Korrekturlesen durch DNA-Polymerase (Basenfehlpaarungsreparatur, Mismatch-Reparatur)
Das für das Kopieren der DNA zuständige Protein DNA-Polymerase besitzt die Fähigkeit, den neuen DNA-Strang noch während der Synthese zu überprüfen und mit dem ursprünglichen Strang zu vergleichen. Dennoch ist diese Funktion ungenau und ohne weitere Kontrolle durch DNA-Mismatch-Reparaturproteine wäre die Anzahl spontaner Mutationen um das 1000-fache erhöht. Das Bakterium Escherichia coli kann zudem anhand des Methylierungsstatus den bei der Replikation entstandenen fehlerhaften Tochterstrang von der abgeschriebenen DNA unterscheiden. Der neue Strang wird etwas später als die Matrize (der Elternstrang) an den Adeninresten der Sequenz GATC methyliert. Ein Defekt in der Mismatchreparatur verursacht eine Form von Darmkrebs: Hereditäres non-polypöses kolorektales Karzinom (HNPCC, hereditary nonpolyposis colorectal cancer).
Photoreaktivierung
Photolyasen sind in der Lage, durch ultraviolette Strahlung in der DNA entstandene Cyclobutan-Ringe und (6-4)-Photoprodukte aufzulösen. Sie verfügen über einen sog. Antennenkomplex, mit dem sie blaues oder ultraviolettes Licht absorbieren und mithilfe dieser Energie vom Kofaktor FAD zwei Elektronen auf den im aktiven Zentrum des Enzyms gebundenen DNA-Schaden übertragen. Selbiger spaltet sich in der Folge. Die Photolyase stellt so ohne Herausschneiden und Einfügen von Basen die native Struktur der DNA wieder her. Bis heute konnten in vielen Organismen von den Prokaryoten über Pilze und Pflanzen bis hin zu Beuteltieren Photolyasen nachgewiesen werden. Trotz ihrer unbestrittenen vorteilhaften Eigenschaften für diese Organismen sind die Photolyasen im Laufe der Evolution mehrfach verloren gegangen. [4] Auch die höheren Säugetiere, zu denen der Mensch zählt, besitzen keine reparaturaktiven Varianten dieser Proteine mehr. Die Gründe hierfür sind bisher nicht abschließend geklärt.
Reparatur von Doppelstrangbrüchen (Rekombinationsreparatur)
Bei einem Doppelstrangbruch gibt es die Möglichkeit, dass das Schwesterchromosom die fehlende Information für diesen DNA-Abschnitt überträgt.
- Nichthomologes Endjoining
- Homologe Rekombination
- Single strand annealing
Eine Störung dieser Reparatursysteme manifestiert sich klinisch häufig als Chromosomenbruchsyndrom, wie zum Beispiel das Nijmegen-Breakage-Syndrom.
Weblinks
- DNA-Reparatur Universität München
Einzelnachweise
- ↑ C. R. Bartram: Genetische Grundlagen der Kanzerogenese. In: W. Hiddemann, C. R. Bartram (Hrsg.): Die Onkologie. Teil 1, Ausgabe 2, Verlag Springer, 2009, ISBN 3-540-79724-6, S. 118–127. eingeschränkte Vorschau in der Google Buchsuche
- ↑ Peter Elsner, Erhard Hoelzle u. a.: Täglicher Lichtschutz in der Prävention chronischer UV-Schäden der Haut. In: JDDG. 5, 2007, S. -–-, doi:10.1111/j.1610-0387.2007.06099_supp.x.
- ↑ Rolf Sauer: Strahlentherapie und Onkologie. 5. Auflage, Elsevier GmbH, Urban und Fischer Verlag, München, 2010; ISBN 978-3-437-47501-6, S. 112. eingeschränkte Vorschau in der Google Buchsuche
- ↑ Lucas-Lledó, J.I. & Lynch, M. Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol. Biol. Evol 26, 1143-1153 (2009).