Barometrische Höhenmessung
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Thermodynamik
Eine barometrische Höhenmessung erfolgt mittels des am Messort herrschenden Luftdrucks. Sie ist im Gegensatz zur trigonometrischen oder nivellitischen Höhenmessung weniger genau, aber sehr rasch und kostengünstig durchführbar. Die Messgeräte heißen Altimeter oder Höhenmesser; ihre wichtigsten Anwendungen sind:
- Bergsteigen, Wandern, Orientierungslauf: solche Altimeter sind Aneroid-Barometer, die statt des Luftdrucks die genäherte Meereshöhe anzeigen. Der Zeiger macht eine Umdrehung pro 1000 Meter; der km-Wert erscheint in einem kleinen Fenster (üblicher Messbereich 5 oder 8 km). Die Genauigkeit beträgt 2-20 Meter, wenn eine korrekte Ausgangshöhe (Landmarke, Höhenfestpunkt) oder der Druck im Meeresniveau (Geoid) eingestellt wurde.
- Geodäsie, Navigation: Instrumente wie oben, aber genauer. Durch Kalibrieren mittels Temperatur oder Druckgradient sind Genauigkeiten bis zu einigen Dezimetern möglich, bei stabiler Wetterlage sogar 10–20 cm.
Für beide Anwendungsbereiche werden digitale Altimeter häufiger. Sie zeigen je nach Programmmenü auch Höhendifferenzen, Maximalwerte oder den zeitlichen Verlauf von Höhenprofilen.
- Luftfahrt (Privat- und Linienflug): Höhenmesser wie oben, aber Messbereich bis 50.000 ft (15 km) und Skala meist in Fuß statt Meter (1 ft = 0,3048 m). Durch Einstellen des QNH (Druck auf Meeresniveau) erhält man absolute Höhen, mit QFE (Druck auf Bodenhöhe) die Höhe über dem Flugplatz. Flugzeuge haben zusätzlich ein Variometer zur Anzeige von Höhenänderungen (barometrische Flughöhe), Linienflugzeuge auch einen Radarhöhenmesser.
Physikalischer Hintergrund
Bei infinitesimalen Höhendifferenzen ändert sich der Luftdruck p gemäß
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}p = -\rho g\,\mathrm{d}h
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho
die Dichte und
Betrachtet man die Luft als ideales Gas und legt das Gesetz von Boyle-Mariotte zugrunde, so ergibt sich für den Zusammenhang zwischen Dichte und Druck die Beziehung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho = \frac{{\rho}_0}{p_0}p
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\rho}_0
und
Man erhält somit folgende Differentialgleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm{d}p}{p} = -\frac{{\rho}_0}{p_0}g\,\mathrm{d}h
Mit der Anfangsbedingung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p(h) = p_0e^{-\frac{{\rho}_0}{p_0}gh}
Somit lässt sich die einem Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p zuordenbare Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h berechnen, was die Grundlage der barometrischen Höhenmessung darstellt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h = \frac{p_0}{\rho_0g}\cdot\ln\left(\frac{p_0}{p}\right)
Zu beachten ist allerdings, dass die barometrische Höhenformel nicht über große Höhendifferenzen angewendet werden darf, da sonst zwei Grundannahmen der Herleitung nicht mehr gelten:
. bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T=\text{const.} (Gesetz von Boyle-Mariotte).- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g = \text{const.} .
Siehe auch
- Barometrische Höhenformel,
- Barometer-Frage
- Barometrische Höhenmessung in der Luftfahrt