Torsion (Mechanik)

Torsion (Mechanik)

Veranschaulichung der Torsion
Torsion eines Stabes mit quadratischem Querschnitt
Versuchsaufbau zur Bestimmung der Torsionsgesetze (Holzstich 1897)

Die Torsion beschreibt die Verdrehung eines Bauteils, die durch die Wirkung eines Torsionsmoments entsteht. Versucht man einen Stab mit einem Hebel zu verdrehen, so wirkt auf diesen (neben einer allfälligen Querkraft) ein Torsionsmoment.

Das Torsionsmoment T ergibt sich aus der Kraft F am Hebel multipliziert mit der Länge r des dazu verwendeten Hebels:

$ T=F\cdot r $

Die entstehende Verdrehung (Verdrehwinkel $ {\theta }_{t} $) des Stabs ergibt sich aus dem Torsionsmoment T geteilt durch das Torsionsträgheitsmoment $ {I_{T}} $, welches die Größe und Form des Stabquerschnitts beschreibt, und den Schubmodul G, multipliziert mit der Stablänge L:

$ {\theta }_{t}={TL \over GI_{T}} $

Ausschließlich für Kreisquerschnitte und für geschlossene Kreisringquerschnitte ist das Torsionsträgheitsmoment gleich dem polaren Flächenträgheitsmoment $ I_{T}=I_{p} $. Für andere Querschnitte ist die Berechnung des Torsionsträgheitsmoments nur in besonderen Fällen in geschlossener Form möglich. Zudem ist in der Bestimmung in vielen Fällen von Bedeutung, ob es sich um verwölbungsfreie Querschnitte oder nicht handelt und ob die Verwölbung behindert wird oder nicht.

Die Schubspannung $ {\tau }_{t} $ im Stab ergibt sich aus dem Torsionsmoment T geteilt durch das polare Widerstandsmoment $ W_{p} $:

$ {\tau }_{t}={T \over W_{p}} $

Diese Schubspannung darf nicht größer sein als die maximal zulässige Schubspannung $ {\tau _{zul}} $ des zu verwendenden Materials:

$ \tau $$ {\tau _{zul}} $

Bei zu starker Verdrehung geht die Verformung beispielsweise einer Welle aus dem elastischen Bereich in den plastischen Bereich über und führt schließlich zum Bruch.

Torsion ohne Verwölbung

Bei gleichmäßigen Querschnitten, die den Bedingungen genügen, dass Produkt aus Wandstärke und Radius über der Laufvariablen konstant sind, und dass es sich um ein geschlossenes Profil handelt, entstehen im Falle der Torsion keine Spannungen in Längsrichtung und damit auch keine Verwölbung des Querschnitts. Dieses Phänomen erfüllt beispielsweise ein Kreiszylinder konstanter Wandstärke. Dieser Fall der Torsion wird als Neubersche Schale bezeichnet. Zu beachten ist allerdings, dass die lineare Elastizitätstheorie gilt, was bedeutet, dass nur kleine Verformungen, kleine Verzerrungen und keine plastische Verformung zugelassen sind. Außerdem soll die Belastung in Form eines an der Längsachse anliegenden Torsionsmomentes anliegen.

Torsion mit unbehinderter Verwölbung (Saint-Venant)

Die reine Torsion, auch Saint-Venantsche Torsion genannt, erlaubt eine unbehinderte Verschiebung von Querschnittspunkten in Längsrichtung (Z-Richtung) des Profiles. Man spricht auch von einer unbehinderten Verwölbung des Querschnitts. Die Querschnittsform senkrecht zur Z-Richtung bleibt dabei erhalten (kleine Verformungen). Es wird angenommen, dass die Querschnittsverwölbung unabhängig von der Lage des Querschnitts ist und sich frei einstellen kann. Man bedient sich quasi eines Tricks, um im Endeffekt Profile tordieren zu lassen, die keinen kreisförmigen Querschnitt haben. Diese können nicht als Neubersche Schale aufgefasst werden. Allerdings darf ein solches Profil nicht fest eingespannt werden, es muss frei im Raum stehen und es wird auf beiden Seiten ein Moment aufgebracht. So ist gewährleistet, dass keine Normalspannungen längs des Profils auftreten, obwohl sich einzelne Punkte am Profil in längsrichtung verschieben dürfen.

Das innere Torsionsmoment ist über die Länge des Stabes konstant, und hat die Größe des äußeren Torsionsmomentes. Man spricht auch vom primären Torsionsmoment.

Die größte Torsionsschubspannung findet sich im Bereich der kleinsten Wandstärke (Theorie über dünnwandige geschlossene Hohlprofile und dünnwandige offene Profile).

Wölbkrafttorsion

Wölbkrafttorsion tritt auf, wenn

  • die Verwölbung des verdrillten Stabquerschnittes an Auflagerpunkten, beispielsweise durch Endplatten, behindert wird.
  • durch Querschnittsänderungen und damit veränderlicher Torsionssteifigkeit und sich ändernder Einheitsverwölbung des Stabes
  • sowie durch veränderliche Torsionsbelastung, wenn das daraus resultierende Torsionsmoment im Stab nicht konstant ist (z.B. durch ein Streckentorsionsmoment)
  • wenn kein wölbfreier Querschnitt vorliegt oder ein wölbfreier Querschnitt durch Erzwingung einer anderen Drehachse als seines Schubmittelpunkts Verwölbungen aufgezwungen bekommt.

Sie tritt auch auf, wenn das Torsionsmoment innerhalb der Stablänge angreift. Sie entspricht einem die Verdrillung des Stabes behindernden örtlichen Spannungszustand durch eine Auflagerbedingung. Mathematisch kann man sich die Wölbkrafttorsion vorstellen wie eine St. Venantsche Torsion mit zusätzlichen statisch unbestimmten Längsspannungen im Auflagerpunkt, die so groß sein müssen, dass die Auflagerbedingung, zum Beispiel Längsverschiebung gleich null, erfüllt sind.

Das innere Moment des Stabes spaltet sich dann in zwei Anteile. Ein Anteil stammt aus der reinen Torsion, der zweite Anteil entsteht durch die behinderte Verwölbung.

Bei Vollquerschnitten ist der Anteil des Wölbmomentes aufgrund der relativ geringen Verwölbung meist klein, es kann daher in der Regel unberücksichtigt bleiben. Bei dünnwandigen Profilen muss sie jedoch berücksichtigt werden.

In dünnwandigen Querschnitten treten neben den St.Venantschen Schubspannungen (sogenannte Primäre Torsionsschubspannungen) zusätzliche sekundäre Schub- (auch Wölbschubspannungen genannt) und WölbNormalspannungen auf, die aus einer verhinderten Verwölbung des Querschnitts aus o. g. Gründen resultieren. Bei geschlossenen dünnwandigen Profilen wie kaltgeformten Hohlprofilen bleiben diese Spannungen und die daraus entstehenden Verformungen jedoch meist klein gegenüber den Spannungen aus der reinen Torsion. Im Allgemeinen ist keine Betrachtung der Wölbkrafttorsion bei diesen Querschnitten notwendig. Allerdings müssen Grenzfälle betrachtet werden, die die Querschnittsverformungen bei sehr dünnwandigen Querschnitten bei der Berechnung berücksichtigen.

Die Wölbnormalspannungen verteilen sich gleichmäßig über den Querschnitt.

Die Drillung ist über die Länge des Stabes nicht konstant, da der Einfluss der Wölbkrafttorsion mit zunehmendem Abstand von dem Auflagerpunkt, an dem die Verwölbung des Querschnitts behindert ist geringer wird. Daher sind auch die Wölbnormalspannungen über die Länge des Stabes nicht konstant.

Retro- und Antetorsion

Wenn dieses Segment, bezogen auf seine Längsachse nach vorne verdreht ist, bezeichnet man es als Antetorsion. Liegt eine nach hinten gerichtete Verdrehung vor, spricht man von Retrotorsion. Beim Menschen ist der Oberschenkelknochen, Femur, ein solches Beispiel. Hier ist der Femurkopf und -hals gegenüber der Längsachse des Oberschenkelknochens nach vorne verdreht.

Anwendungsbeispiele

Der Effekt der Torsion findet in vielen Bereichen Anwendung:

  • Torsionspendel als Zeitnormal in Uhren
  • Henry Cavendish benutzte 1798 eine Gravitationswaage um die Gravitationskonstante zu messen. Dabei stellt sich ein Gleichgewicht zwischen Torsionskraft des Aufhängungsdrahtes und Gravitationskraft ein.
  • Schraubenfeder
  • Drehstabfeder im Fahrzeugbau
  • Torsionsgeschütz, antike Artilleriewaffe
  • Torsionsversuch zur Werkstoffprüfung
  • Spanische Winsch zum Spannen
  • Auswringen (vortrocknen) von beispielsweise Wäsche, Wischmopp oder auch Haaren

Literatur

  • Wolfgang Francke und Harald Friemann: Schub und Torsion in geraden Stäben : Grundlagen und Berechnungsbeispiele. Vieweg, Konstanz 2005, ISBN 3-528-03990-6.
  • Edmund Spitzenberger: Wölbkrafttorsion gemischt offen-geschlossener Querschnitte. VDM, Saarbrücken 2008, ISBN 978-3-639-02493-7.

Weblinks

Commons: Torsion – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference