Schutzgas

Als Schutzgas wird ein Gas oder Gasgemisch bezeichnet, welches die Aufgabe hat, die Luft der Erdatmosphäre zu verdrängen, vor allem den Sauerstoff der Luft.

Lebensmittel

Schutzgas wird häufig in der Verpackung von Lebensmitteln verwendet, damit diese vor Bakterien aus der Luft geschützt werden. Die Schutzgasatmospäre besteht je nach zu verpackendem Lebnsmittel aus natürlichen, geruchlosen und geschmacksneutralen Bestandteilen der Luft, z. B. Kohlenstoffdioxid(CO2) oder Stickstoff(N2) bzw. wie bei Frischfleisch aus Sauerstoff (O2) [1], deren Mengenanteile in Abhängigkeit vom Produkt variieren.

Schutzgase sind keine Zusatzstoffe im Sinne des Lebensmittelgesetzes. Sie sind lebensmittelrechtlich unbedenklich und müssen nicht deklariert werden.

Metalltechnik

Schweißtechnik

Visualisierung der Schutzgasströmung durch PIV am MSG-Impulslichtbogen
Visualisierung der Gasströmung durch Schlierentechnik am Schutzgasfreistrahl
Numerische Simulation der Sauerstoffkonzentration und der Geschwindigkeit im Schutzgasfreistrahl

Beim Schutzgasschweißen wird der Lichtbogen und das Schmelzbad durch ein Schutzgas vor dem Zutritt von Atmosphärengasen (N2, O2, H2) geschützt. Dadurch wird verhindert, dass das Metall mit dem Luftsauerstoff reagiert (Korrosion, Verbrennung) oder auf metallurgische bzw. mechanische Weise Poren im Schmelzgut entstehen. Besonders wichtig ist ein hochwertiger Gasschutz für hochlegierte Stähle aber auch für Leichtmetalle wie Aluminium, Magnesium oder Titan (Element). Ist die Qualität der Gasabdeckung unzureichend können je nach Werkstoff und Randbedingungen Anlauffarben, Rußablagerungen, vermehrter Schweißspritzerauswurf, Poren oder sogar Gefügebeeinträchtigungen entstehen. Neben der reinen Schutzfunktion kann mit der Schutzgasauswahl aber auch die Nahtform, die Spaltüberbrückbarkeit, das Zündverhalten, die Lichtbogenstabilität oder der Tropfenübergang beeinflusst werden.

Man unterscheidet beim Schutzgasschweißen nach DIN 1910-100 zwischen Metall-Schutzgasschweißen (MSG) und Wolfram-Schutzgasschweißen (WSG) sowie deren Unterverfahren. Die verwendeten Schutzgase variieren je nach Verfahren, Werkstoff oder speziellen Prozessanforderungen. Schutzgase für das Metall-Schutzgasschweißen von un- und niedriglegierte Stählen sind z. B. CO2 oder Gemische aus Argon und CO2. Für hochlegierte Stähle werden in der Regel argonreiche Mischgase eingesetzt, die nur wenige Prozent O2 oder CO2 enthalten. Aluminium, Magnesium oder Titan (Element) werden in der Regel mit Argon bzw. Argon-Helium-Gemischen geschweißt. Sind aktive Komponenten wie O2 oder CO2 oder H2 im Schutzgas enthalten spricht man nach DIN EN ISO 14175 und DIN 1910-100 von Metall-Aktivgasschweißen. Werden ausschließlich Argon oder Helium bzw. deren Gemische verwendet, spricht man von Metall-Inertgasschweißen. Die Vielfalt der standardisierten Gasgemische ist inzwischen sehr groß. Als Gemischkomponenten kommen Argon, Helium, Kohlenstoffdioxid aber auch Sauerstoff, Wasserstoff und Stickstoff in Frage. Eine Klassifizierung der Schutzgase gibt die europäische Norm DIN EN ISO 14175 „Gase und Mischgase für das Lichtbogenschweißen und verwandte Prozesse“.

Eine gute Schutzgasabdeckung hängt in entscheidendem Maße von der strömungstechnischen Konstruktion des Schweißbrenners und den richtig gewählten Randbedingungen in der Schweißfertigung ab. Für die Visualisierung und Bewertung der Gasströmung und der resultierenden Gasabdeckung am Werkstück werden in Wissenschaft und Industrie sowohl diagnostische als auch numerische Methoden der Strömungsanalyse eingesetzt.

Zur diagnostischen Visualisierung der Gasströmung kommen die Methoden der Schlierentechnik [2] oder der Particle Image Velocimetry (PIV)[3] zum Einsatz. Durch die Sauerstoffmessung[4] kann die Qualität der Schutzgasabdeckung unter Berücksichtigung des Lichtbogens im Labor quantitativ ermittelt werden.

Neben den Methoden der diagnostischen Strömungsanalyse kann die Schutzgasströmung von Schweißprozessen auch mit Hilfe numerischer Strömungssimulation[5] analysiert werden. Vorteile der numerischen Simulation liegen in der Möglichkeit Strömungen auch in kleinen, verdeckten Bereichen innerhalb des Schweißbrenners zu visualisieren sowie komplexe physikalische Zusammenhänge zeitlich und örtlich hochaufgelöst zu beschreiben . Ursache-Wirkungs-Zusammenhänge können sehr gut erkannt und auf ihre physikalischen Ursachen zurückgeführt werden.[6][7]

Härtetechnik

Ebenso findet Schutzgas in der Härtetechnik Anwendung, da in der Härteanlage gasförmiger Stickstoff oder Wasserstoff verhindert, dass Sauerstoff den zu härtenden Stahl verändert. Damit bleibt die Oberfläche des gehärteten Werkstücks glänzend blank und gleichzeitig fallen weniger Rückstände an, die sonst mühsam aus dem Abschreckmedium ausgefiltert werden müssten.

Elektrotechnik

In der Elektrotechnik wird Schutzgas verwendet, um die Leitfähigkeit in der Umgebung von Schaltkontakten herabzusetzen. Dies dient der Funkenlöschung.

Siehe auch

Literatur

Einzelnachweise

  1. s. Homepage des Bundesinstitut für Risikobewertung(BfR) [1]
  2. TU Dresden - Schlierentechnik
  3. TU Dresden - Particle Image Velocimetry (PIV)
  4. TU Dresden - Sauerstoffmessung
  5. TU Dresden - Numerische Strömungssimulation
  6. Dreher, M.; Füssel, U.; Schnick, M.; Rose, S.; Hertel, M.: Strömungssimulation und -diagnostik. Moderne Methoden für die effiziente und innovative MSG-Schweißbrennerentwicklung. DVS-Berichte Bd. 267. S.159-165, ISBN 978-3-87155-592-3,Düsseldorf 2010
  7. Füssel, U; Dreher, M.; Schnick, M.: Strömungstechnische Auslegung von Brennersystemen zum wirtschaftlichen und emissionsreduzierten Lichtbogenschweißen. Cluster Lichtbogenschweißen – Physik und Werkzeug, AiF 15.871 B, Laufzeit 1. November 2008 - 31. Dezember 2011

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.