Gesetz von Hagen-Poiseuille

Gesetz von Hagen-Poiseuille

Mit dem Gesetz von Hagen-Poiseuille [po'aːzœj][1] (nach Gotthilf Heinrich Ludwig Hagen, 1797–1884 und Jean Louis Marie Poiseuille, 1797–1869) wird der Volumenstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot V – d. h. das geflossene Volumen V pro Zeiteinheit – bei einer laminaren stationären Strömung eines homogenen Newton'schen Fluids durch ein Rohr (Kapillare) mit dem Radius r und der Länge l beschrieben.

Formulierung

Das Gesetz lautet

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot V=\frac{dV}{dt} = \frac{\pi \cdot r^4}{8 \cdot \eta}\frac{\Delta p}{l} = -\frac{\pi \cdot r^4}{8 \cdot \eta}\frac{\partial p}{\partial z}

mit

Variable Bedeutung SI-Einheit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot V Volumenstrom durch das Rohr Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\rm m^3}{\rm s}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r Innenradius des Rohres m
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l Länge des Rohres m
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta dynamische Viskosität der strömenden Flüssigkeit Pa·s
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta p Druckdifferenz zwischen Anfang und Ende des Rohres Pa
z Flussrichtung
Fehler beim Erstellen des Vorschaubildes:
Zustandekommen von Turbulenzen (Wirbeln) in einer zunächst laminaren Strömung

Dieses Gesetz folgt direkt aus dem stationären, parabolischen Strömungsprofil durch ein Rohr, das aus den Navier-Stokes-Gleichungen hergeleitet werden kann -- oder direkt aus der Definition der Viskosität, siehe unten. Bemerkenswert ist die Abhängigkeit des Volumendurchflusses von der vierten Potenz des Radius des Rohres. Dadurch hängt der Strömungswiderstand sehr stark vom Radius des Rohres ab, so würde beispielsweise eine Verringerung des Rohrdurchmessers auf die Hälfte den Strömungswiderstand auf das 16-fache erhöhen.

Das Gesetz gilt nur für laminare Strömungen. Bei größerem Durchfluss einer Rohrleitung, verbunden mit höheren Strömungsgeschwindigkeiten bzw. größeren Abmessungen, kommt es zu turbulenten Strömungen mit wesentlich höherem Strömungswiderstand als nach Hagen-Poiseuille zu erwarten wäre. Die konkreten Verhältnisse turbulenter Strömungen werden u.a. mit den Formeln von Blasius, Nikuradse bzw. Prandtl-Colebrook beschrieben.

Herleitung

Hier ist die Überlegung, aus der das Hagen-Poiseuille-Gesetz und das ihr zugrundeliegende Strömungsprofil folgt: Bezeichne $ v(s) $ die Strömungsgeschwindigkeit bei Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s eines kreisförmigen Rohres mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r . Betrachten wir einen Strömungszylinder zwischen den Radien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s-ds/2 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s+ds/2 , so gilt die Kraftgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 = \,\eta (A^+dv^+ -A^-dv^- )/ds + dA \Delta p.

Sie drückt aus, dass der Strömungszylinder sich mit konstanter Geschwindigkeit bewegt, die auf ihn einwirkende Gesamtkraft also null ist. Diese Kraft setzt sich aus drei Teilen zusammen:

(1) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): dA\Delta p = 2\pi \,s\, ds \,\Delta p ist die von der Druckdifferenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta p auf das Flächenstück Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): dA = 2\pi \,s\,ds erzeugte Kraft;

(2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta A^+ dv^+/ds = \eta \,2\pi (s+ds/2) l (v(s+ds)-v(s)) / ds beschreibt die Reibung (Newtonsches Reibungsgesetz) des Strömungszylinders an dem nach außen benachbarten Strömungszylinder; die Geschwindigkeitsdifferenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v(s+ds)-v(s) verteilt sich auf eine Schichtdicke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): ds und wirkt entlang der Fläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2\pi (s+ds/2) l ;

(3) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta A^- dv^-/ds = \eta \,2\pi (s-ds/2) l (v(s)-v(s-ds)) / ds beschreibt analog die Reibung am innen benachbarten Strömungszylinder.

Im Grenzübergang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): ds\to 0 ergibt sich eine Differentialgleichung zweiter Ordnung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v(r) , nämlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v''(s)+v'(s)/s +\,\Delta p/\eta l=0 .

Die Lösung muss die Randbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v(r)=0 erfüllen und ist dadurch eindeutig bestimmt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v(s) = \frac{\Delta p}{4 \eta\, l} \,(r^2-s^2) .

Dies ist genau das genannte quadratische Strömungsprofil. Durch Integration folgt dann das Gesetz von Hagen-Poiseuille:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{V} = \int_0^{2\pi} \int_0^r v(s) s\,ds\,d\varphi = \frac{\pi r^4}{8\eta} \frac{\Delta p}{l}

Nicht kreisförmige Kanalquerschnitte

Für einen Rechteck-Kanal mit den Abmessungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h lässt sich dieses Gesetz in der folgenden Form angeben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot V = \frac{K\cdot\min(b,h)^3\cdot\max(b,h)}{12\eta l}\cdot \Delta p

Hierbei ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K=1-\sum_{n=1}^{\infty}\frac{1}{(2n-1)^5}\cdot\frac{192}{\pi^5}\cdot\frac{\min(b,h)}{\max(b,h)}\tanh\left((2n-1)\frac{\pi}{2}\frac{\max(b,h)}{\min(b,h)}\right)

Die Abweichung vom exakten Wert bei Berechnung von K in erster Näherung (n=1) beträgt maximal 0,67 %, in zweiter Näherung 0,06 %, in dritter Näherung 0,01 %.

Einige Beispielwerte, berechnet in dritter Näherung:

$ {\frac {\min(b,h)}{\max(b,h)}} $ 0 1/10 1/5 1/4 1/3 1/2 2/3 1
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K 1 0,9370 0,8740 0,8425 0,7900 0,6861 0,5873 0,4218

Formeln für weitere Querschnittsformen werden z.B. in [2] hergeleitet.

Anwendungen

Im Gültigkeitsbereich des Gesetzes bewirkt etwa die Verengung eines runden Leitungsquerschnitts um 10 % einen Durchsatzrückgang um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 - 0{,}9^4 = 34\% ! Um den ursprünglichen Durchfluss bei verkleinertem Querschnitt wieder zu erreichen, muss die Druckdifferenz um 52 % steigen.

Außerdem bildet das Gesetz von Hagen-Poiseuille die Grundlage einer Vielzahl von Modellgleichungen bei der Durchströmung von Schüttgütern.

Eingeschränkte Gültigkeit im Blut

Das Gesetz von Hagen-Poiseuille bezieht sich auf Newtonsche Flüssigkeiten. Bei Newtonschen Flüssigkeiten ist die Viskosität eine konstante Materialeigenschaft (und nur von der Temperatur abhängig). Ein Beispiel für eine solche Flüssigkeit ist Wasser. Das Blutplasma ist auch eine Newtonsche Flüssigkeit, nicht aber das Blut: Es ist eine inhomogene Suspension aus verschiedenen Zellen in Plasma. Hier ist die Viskosität von der Größe der Schubspannung (also der Strömungsgeschwindigkeit) abhängig. Weiterhin spielt auch die Deformierbarkeit der Erythrozyten eine Rolle. Diese können sich beispielsweise ‚geldrollenartig‘ in dünnen Gefäßen aggregieren.

Dieses spezielle Fachgebiet der Rheologie des Blutes wird als Hämorheologie (englisch hemorheology) bezeichnet.

Einzelnachweise

  1. Aussprache von Poiseuille: Wie man Poiseuille auf Französisch ausspricht
  2. Henrik Bruus: Theoretical Microfluidics. Oxford University Press, 2008

Literatur

  • Wolfgang Beitz; Karl-Heinrich Grote (Hrsg.): Dubbel. Taschenbuch für den Maschinenbau. 20. Aufl., Springer-Verlag, Berlin, Heidelberg, New York 2001, ISBN 3-540-67777-1
  • James P. Hartnett; Milivoje Kostic: Heat Transfer to Newtonian and Non-Newtonian Fluids in Rectangular Ducts. In: Advances in Heat Transfer, Volume 19 (1989)
  • Rainer Klinke (Hrsg.): Physiologie. Zahlreiche Tabellen. 5. Aufl., Georg Thieme Verlag, Stuttgart, New York 2005, ISBN 3-13-796005-3