Motoröl

Erweiterte Suche

Unter Motoröl versteht man landläufig jede Sorte von Schmieröl, die dazu geeignet ist, einen Verbrennungsmotor zu schmieren.

Im weiteren Sinne gehören auch die Zweitaktöle zu den Motorölen, ebenso wie alle die Schmieröle, die für andere Motor-Bauarten gedacht sind. Diese tragen jedoch meist andere, auf ihren speziellen Einsatzzweck gerichtete Gattungsnamen.

synthetisches Motoröl

Herstellungsart

In diesem Artikel oder Abschnitt fehlen folgende wichtige Informationen: Definition/Erklärung des Begriffs „Grundöl“.
Du kannst Wikipedia helfen, indem du sie recherchierst und einfügst, aber bitte kopiere keine fremden Texte in diesen Artikel.
  • Mineralöl: mineralisches Motoröl wird aus Grundölen hergestellt, die direkt aus Erdöldestillaten gewonnen wurden.
  • Teilsynthetik-Öl: teilsynthetisches Motoröl wird aus einer Mischung mineralischer und synthetischer Grundöle hergestellt.
  • Synthetik-Öl: synthetisches Motoröl wird ausschließlich aus Grundölen hergestellt, die synthetisch oder nicht direkt aus Erdöldestillaten gewonnen wurden.

Viskositätsklassen

SAE-Klassifikation

Beispiele von SAE-Klassen: Rötliche Farben bedeuten Einbereichs-Sommeröle, bläuliche Farben sind Einbereichs-Winteröle, grünliche Farben sind Mehrbereichsöle

Die SAE-Viskositätsklassen werden seit 1911 von der Society of Automotive Engineers festgelegt.

Motoröle für Kraftfahrzeuge werden in Sommer- und Winteröle unterteilt. Dies ist historisch zu verstehen, da früher Motoröle je nach Jahreszeit gewechselt wurden. Heutzutage sind Mehrbereichsöle üblich, die Eigenschaften von Sommer- und Winteröl in sich vereinen. Der technische Fortschritt macht es möglich, mit dem selben Motoröl alle Jahreszeiten abzudecken. Für Sonderfälle, wie Rennsport oder Polarexpeditionen, sind aber weiterhin Einbereichsöle erhältlich.

  • Sommeröle erhalten nach der SAE J-300 eine der Viskositätsklassen 20 (dünnflüssig), 30, 40, 50 oder 60 (sehr dickflüssig). Das hauptsächliche Unterscheidungsmerkmal ist das Fließverhalten bei hohen Öltemperaturen. Die Tragfähigkeit des Schmierfilms ist bei höherer Viskosität besser als bei niedriger. Die Bezugstemperatur für heißes Motoröl ist 100 °C, obwohl im Motor wesentlich höhere Öltemperaturen auftreten können.
Motoröl min. Viskosität bei 100 °C[1]
SAE 20 5,6 mm²/s
SAE 30 9,3 mm²/s
SAE 40 12,5 mm²/s
SAE 50 16,3 mm²/s
SAE 60 21,9 mm²/s
  • Winteröle erhalten nach der SAE J-300 eine der Viskositätsklassen 0W (sehr dünnflüssig), 5W, 10W, 15W, 20W oder 25W, wobei das „W“ für „Wintereignung“ steht. Als Zahlenwert wird die Tieftemperatur-Pump-Viskosität bei einer bestimmten Temperatur nach folgendem Schema verschlüsselt[2] :
Motoröl Tiefsttemperatur
SAE 0W -30°C
SAE 5W -25°C
SAE 10W -20°C
SAE 15W -15°C
SAE 20W -10°C
SAE 25W -5°C
Zwei Kanister mit verschiedenen Mehrbereichsölen: Links SAE 5W-40, rechts SAE 10W-40
  • Mehrbereichsöle können die Viskositätsklassen von zwei oder mehr Einbereichsölen überbrücken. Sie sind daher im Gegensatz zu Einbereichsölen für den kombinierten Sommer- und Winterbetrieb geeignet.

Bei der Benennung von Mehrbereichsölen wird immer zuerst die geringste Viskosität (Niedrigtemperatur-Viskosität) genannt und dann, nach einem Bindestrich (der als „bis“ verstanden werden soll, aber in der Regel nicht mit ausgesprochen wird), die höchste Viskosität (Hochtemperatur-Viskosität). Beispiele:

Mehrbereichsöl Niedrigtemperatur-Viskosität Hochtemperatur-Viskosität
SAE 0W-40 SAE 0 SAE 40
SAE 10W-60 SAE 10 SAE 60
SAE 20W-60 SAE 20 SAE 60
SAE 15W-40 SAE 15 SAE 40
SAE 20W-50 SAE 20 SAE 50

Um mehrere Viskositätsbereiche überbrücken zu können, enthalten Mehrbereichsöle Polymere als Viskositätsindex-Verbesserer.

Die Wahl der Viskositätsklasse richtet sich in aller Regel nach den Vorgaben des Fahrzeugherstellers, oder konkreter: des Motorenbauers. Der Konstrukteur einer Maschine weiß im Normalfall am besten, mit welchen konstruktiven Besonderheiten er das Aggregat ausgestattet hat und welche Viskositätsklasse für den richtigen Öldruck notwendig ist.

Denn das ist der Hauptgrund für die Angabe der Viskositätsklasse: den korrekten Öldruck im Motor sicherzustellen. Ein zu hoher Öldruck kann die Motordichtungen „überdrücken“, ein zu niedriger die Schmierung der im Motor verwendeten Lager nicht sicherstellen.

Getriebeöle für Kraftfahrzeuge tragen die Viskositätsklassen SAE 70 (sehr dünnflüssig) bis SAE 250 (sehr dickflüssig)

Motoröle für Flugzeuge mit Kolbentriebwerken wiederum werden gemäß den SAE J-1966 und J-1899 mit den Viskositätsstufen 65 bis 120 nach ihrem SUS-Wert (Saybolt Universal Seconds) bezeichnet

Die Viskosität nach SAE-Klassifizierung ist nicht absolut zu sehen. Es handelt sich hier keinesfalls um Messwerte, sondern lediglich um Vergleichswerte, deren Aussagekraft sich auf eine fest definierte Gruppe beschränkt. Die Viskositäts-Angaben unterschiedlicher Ölarten sind nicht miteinander vergleichbar, sondern immer nur innerhalb ihrer Gruppe.

Ungefähr vergleichbar hinsichtlich ihrer Viskosität sind die folgenden Öle:

Motoröl Getriebeöl Flugmotorenöl
SAE 20 SAE 80
SAE 30 SUS weight 65
SAE 40 SAE 90 SUS weight 80
SAE 50 SAE 90 SUS weight 100
SAE 60 SUS weight 120

Obige Tabelle soll lediglich der Anschaulichkeit vergleichbarer Fließfähigkeiten dienen. Flugmotorenöle bspw. werden jedoch nicht in Kraftfahrzeugen eingesetzt – und umgekehrt, da beide Öle völlig unterschiedlich additiviert sind.

Einbereichsöl

Bis in die 1970er Jahre war Einbereichsöl marktbeherrschend. Jedes angebotene Öl hatte seine fest zugeordnete Fließzähigkeit und wurde mit dieser auch bezeichnet. Kraftfahrzeug-Motoren wurden mit Ölen der Viskositätsklassen SAE 20, SAE 30, SAE 40 oder SAE 50 betrieben. Für besondere Anwendungen oder extreme Kältegrade kam noch das dünnflüssige SAE 10 in Frage. Und im Rennsport oder für den Einsatz in extrem heißen Gegenden konnte man sogar Einbereichsöle der fast honigartig zähfließenden Viskositätsklasse SAE 60 bekommen. Insbesondere bei Motoren älterer Baureihen, die mit teilweise großen Toleranzen und Laufspielen konstruiert sind, werden Einbereichsöle mit ihrer garantierten Mindest-Zähflüssigkeit auch heute noch genutzt.

Mehrbereichsöl

Die weitaus meisten heute üblichen Motoröle sind so genannte Mehrbereichsöle. Diese basieren auf dünnflüssigen Grundölen und werden durch spezielle Additive (z.B. Polymere wie Polyester oder Polyisobutylen) so gemischt, dass ihre Viskosität bei höheren Temperaturen nur geringfügig abnimmt. Damit erreicht man eine hohe Schmierfähigkeit des kalten Öls beim Kaltstart, eine geringere Belastung des Anlassers bei tiefen Temperaturen und eine ausreichend hohe Schmiersicherheit bei höheren Außen- und Motortemperaturen. So kann das gleiche Öl im Sommer- wie im Winterbetrieb verwendet werden, was bei den früher üblichen Einbereichsölen nicht möglich war. Die verwendeten Additive werden auch VI-Verbesserer genannt, sie verbessern also den Viskositätsindex (VI), und verringern somit die Temperaturempfindlichkeit der Viskosität. Die größte Schwäche der Mehrbereichsöle liegt allerdings genau in ihrer Stärke: Mehrbereichsöle verlieren im Betrieb zunehmend an Viskosität – und zwar umso schneller, je höher der Anteil der Polymere in ihnen ist. Das heißt im Klartext: je größer der überbrückte Viskositätsbereich ist, desto stärker und schneller „altert“ das Öl, fällt quasi auf die Viskosität seines Ausgangsproduktes zurück. Und das war eben nur ein eher dünnflüssiges Öl. In dieser Eigenschaft ist der Grund dafür zu suchen, dass viele Rennmechaniker, Motortuner und vor allem Flugsportler bis heute auf das klassische Einbereichsöl schwören.

Andererseits haben die Ölhersteller das Problem der schnellen Alterung ihrer Mehrbereichsöle seit Erfindung der synthetischen Öle immer besser in den Griff bekommen. Und moderne, kraftstoffsparende Leichtlauföle mit sehr langen Wechselintervallen (mancherorts wird schon die „lebenslange Ölfüllung“ ab Werk getestet) wären ohne die Mehrbereichs-Technologie gar nicht denkbar.

Öle mit abgesenkter Hochtemperaturviskosität

Heutige Motorkonstrukteure arbeiten mit allen Tricks, um den Kraftstoffverbrauch noch weiter zu senken. Einer dieser Tricks hat auch mit der Viskosität des Motoröls zu tun. Senkt man nämlich im Hochtemperaturbereich die Fließzähigkeit des Motoröls, sinkt gleichzeitig der Reibungsverlust im Motor. Es wird weniger Kraftstoff in Wärme umgewandelt, die Leistung steigt oder der Kraftstoffverbrauch bei gleicher abgeforderter Leistung sinkt. Diese so genannte High-Temperature-High-Shear-Viskosität (HTHS) des Motoröls wird bei hoher Öltemperatur und hoher Motordrehzahl gemessen. Die hohe Drehzahl sorgt dabei für eine hohe Schergeschwindigkeit (Schergefälle). Diese Effekte lassen sich jedoch nur erzielen, wenn die gesamte Motorkonstruktion darauf ausgelegt ist. Bei älteren, ungeeigneten Motorkonstruktionen können solche Öle mit abgesenkter HTHS-Viskosität im Extremfall sogar zu Motorschäden führen. Sie werden daher nur in Fahrzeugen eingesetzt, deren Hersteller eine entsprechende Freigabe erteilt haben.

Legierungen

Unlegiertes Motoröl

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

In den Kindertagen der Motorisierung war Motoröl prinzipiell unlegiert – und die Motoren besaßen keine wirksame Ölfilterung. Jedes Motoröl schleppt aber bereits nach kurzer Betriebsdauer ölunlösliche Fremdstoffe mit, die ebenso aus Materialabrieb im Motor bestehen, wie aus Verbrennungsrückständen, Straßenstaub und Alterungsrückständen des Öls selber. Bei unlegierten Motorölen setzen sich diese Fremdstoffe als Ölschlamm am Boden der Ölwanne ab. Die üblichen Ölwechselintervalle betrugen seinerzeit zwischen 1000 und 5000 km, je nach Motorkonstruktion und Hersteller. Abhängig von der Betriebsvorschrift des Herstellers und dem typischen Einsatzgebiet des Motors war bei jedem oder bei jedem zweiten Ölwechsel die komplette Ölwanne zu demontieren und zu säubern. Bei Oldtimern ist unlegiertes Motoröl noch heute von Bedeutung, da die im legierten Motoröl enthaltenen DD-Additive die Bildung des Ölschlamms verhindern würden. Die unerwünschten Fremdstoffe würden im Öl gebunden und regelmäßig neu durch den Ölkreislauf des Motors gepumpt, was den mechanischen Verschleiß an Lagern und Zylinderlaufflächen erhöhen und die Schmierwirkung des Öles herabsetzen würde. Erschwerend kommt hinzu, dass die in additiviertem Öl enthaltenen Detergentien eine stark reinigende Wirkung haben. Dadurch verhindern sie die bei älteren Motoren oft gewünschten, quasi in die Konstruktion eingerechneten Ölkohle-Ablagerungen oder sie lösen bereits gebildete Ablagerungen auf, was zu Verstopfungen in den Ölkanälen und damit zu Motorschäden führen kann. Oft wird solchen Ablagerungen auch eine dichtende Wirkung zugeschrieben – werden sie durch aggressive Additive entfernt, muss der Motor unter Umständen komplett zerlegt und neu abgedichtet werden. Daher gibt es noch heute unlegierte Einbereichs- und Mehrbereichs-Motorenöle, deren Einsatzgebiet sich vornehmlich auf Motoren ohne Hauptstrom-Ölfilter beschränkt.

Legiertes Motoröl

Nahezu jedes moderne Motoröl ist additiviert, also legiert. Bereits vor dem Ersten Weltkrieg tauchten die ersten Wundermittel auf, die die Qualität handelsüblicher Motoröle verbessern sollten. Neben vielen nutzlosen Produkten gab es in diesem Rahmen immer mal wieder das eine oder andere Additiv (Ölzusatzmittel), das sich unter bestimmten Bedingungen als durchaus wirksam erwies. Dies blieb natürlich auch dem Militär nicht verborgen. Das amerikanische Militär veröffentlichte im Zweiten Weltkrieg schließlich die erste Ölspezifikation, die auf der Beimischung von Additiven zum Grundöl basierte. Das sogenannte HD-Motoröl (HD stand für Heavy Duty) war damit erstmals genormt und fand bald auch Eingang in die zivilen Motoröl-Prüfvorschriften. Heute bestehen bis zu 20 % eines Motoröls aus Additiven wie Alterungsschutzmittel, Detergentien, Dispergentien, Korrosionsinhibitoren, Metalldeaktivatoren, Oxidationsinhibitoren, Pourpointverbesserern, Reibungsminderern, Schaumdämpfern, Verschleißminderern und Viskositätsindexverbesserern. Parallel entwickelten sich die Ölfilter der Motoren immer weiter. Seit 1923 gab es den Purolator, der allerdings noch über 90 % des Motoröles ungefiltert vorbeiströmen ließ. Erst 1943 wurden die ersten vollwirksamen Hauptstrom-Ölfilter entwickelt. Und seit 1954 gibt es die noch heute üblichen Aufdrehfilter, die einen einfachen, regelmäßigen Austausch der Filterpatrone ermöglichen. Diese Filter halten die vom Motoröl mitgeführten Fremdstoffe auf und lagern sie bis zum nächsten Filterwechsel ein. Damit wurde die früher konstruktiv notwendige Ölschlammpfanne in der Ölwanne überflüssig, das Motorinnere kann im Betrieb wesentlich sauberer gehalten werden, was letzten Endes der Verschleißarmut zugute kommt, aber auch die inneren Widerstände und damit den Kraftstoffverbrauch senkt. Diese Entwicklungen befruchteten sich gegenseitig, so dass die modernen Motoröle mit ihren speziellen Legierungen aus Grundölen und Additiven Ölwechselintervalle von bis zu 50.000 km und mehr erlauben, wenn der Fahrzeug- oder Motorenhersteller entsprechende Longlife-Öle freigegeben hat.

Sonderformen

Leichtlauföl

Leichtlauf-Motorenöle sind auf geringere mechanische Reibungsverluste hin entwickelt, um Energie, also Kraftstoff zu sparen. Dazu werden extrem dünnflüssige Motoröle mit hochwertigen Additiven so kombiniert, dass trotz der niedrigen Motoröl-Viskosität eine ausreichende Schmierstoffversorgung des Motors sichergestellt werden kann. Praktisch alle Mehrbereichsöle mit der Tieftemperatur-Viskosität 0W oder 5W sind als synthetisches oder teilsynthetisches Leichtlauföl konstruiert. Leichtlauf-Motorenöle können in Verbindung mit der darauf abgestimmten Motortechnologie tatsächlich Treibstoff sparen. Um Motorschäden zu vermeiden, sollte der Einsatz solcher Leichtlauföle jedoch auf Motoren beschränkt bleiben, deren Hersteller eine entsprechende Freigabe erteilt haben. Oft ist die Herstellerfreigabe auf der Umverpackung des Leichtlauföles abgedruckt. Wenn der Motoren- oder Fahrzeughersteller Motoröle mit der Tieftemperatur-Viskosität 0W oder 5W in der Betriebsanleitung vorschreibt oder vorschlägt, kann man beruhigt davon ausgehen, dass er die Schmierfähigkeit solcher Leichtlauföle getestet und für gut befunden hat.

Longlife-Öl

Auch Longlife-Motorenöle sind in aller Regel Leichtlauföle. Sie werden in Fahrzeugen mit computerberechnetem Longlife-Service vorgeschrieben und dürfen keinesfalls mit anderen Motorölen ergänzt oder aufgefüllt werden, soll die Servicezeit eingehalten werden. Soll in einem Fahrzeug, das für den Longlife-Service konstruiert wurde, „normales“ Motoröl gefahren werden, muss das Motorsteuergerät auf feste Ölwechselintervalle eingestellt werden. (Quelle ?!)

Motoröl mit Festschmierstoff

Die Verwendung von Festschmierstoffen in Motorölen ist Reizthema mit gespaltenen Lagern. Eigentlich gibt es nur zwei Meinungen zum Thema Festschmierstoff im Motoröl: glühende Verfechter und strikte Verweigerer.

Grundsätzlich richtig und allgemein anerkannt ist die Tatsache, dass Festschmierstoffe aus Aluminium, Graphit, Keramik, Kupfer, Molybdänsulfid oder PTFE als Zusatz von Schmierfetten wahre Wunder vollbringen können – jedenfalls im Vergleich zu rein erdölbasierten Produkten. Ob sie die gleiche wundersame Wirkung auch in Verbindung mit Motoröl entfalten können, wird allerdings seit Jahrzehnten heiß diskutiert. Beide Seiten – Befürworter wie Gegner – verweisen auf wissenschaftliche Studien und technische Prüfgutachten, die ihre jeweiligen Ansichten bestätigen.

Interessant ist in diesem Zusammenhang ein Rückblick in die Geschichte: Vom Beginn des 20. Jahrhunderts bis in die 1940er Jahre gab es eine kaum überschaubare Zahl von Ölzusatzprodukten, mit denen die Qualität handelsüblicher Motoröle verbessert werden sollte. Und auch damals gab es Befürworter wie Gegner; die einen fuhren keinen Meter ohne solche Additive – die anderen hielten das alles für totalen Quatsch und überzogen die Anwender mit Spott und Häme. Erst als das amerikanische Militär dann zu Beginn der 1940er Jahre legierte Öle als Heavy-Duty-Öle prüfen und normen ließ, gewannen die Öl-Additive allgemeine Anerkennung.

Unisono behaupteter Vorteil aller Festschmierstoff-Motoröle sind die besseren Notlaufeigenschaften und die höhere Schmierfähigkeit. Letzteres soll die Reibungswiderstände im Motor verringern und damit zu mehr Leistung und weniger Kraftstoffverbrauch führen. Weitere, individuellere Vorteile ergeben sich unter Umständen aus der jeweils gewählten Festschmierstoff-Art.

Auf Grund der vorstehend erörterten Diskussionslage bleibt die Verwendung solcher Motoröle aber bis auf Weiteres eine Glaubensfrage - und eine Frage des Vertrauens in den Hersteller und Entwickler des Öles.

Die meisten Fahrzeug- bzw. Motorenhersteller formulieren ihre Betriebsanleitungen heutzutage derart, dass die Benutzung von externen Öladditiven untersagt wird und im Falle eines Motorschadens zu Konsequenzen wie z.B. Verlust von Garantie oder Gewährleistung führt.

Motorrad-Öl

Ein Motorrad-Öl unterscheidet sich prinzipiell nicht von einem Öl für Automobile. Allerdings sind bei vielen Motorrädern die Getriebe so in die Motoren integriert, dass es nur einen Ölkreislauf gibt. Daraus ergibt sich eine besonders hohe Anforderung an Scherstabilität (Motorradmotoren erreichen gegenüber PKW-Motoren höhere Kolbengeschwindigkeiten) und zusätzlich an die Stabilität gegen Flächenpressung, da die Schmierung der Getriebezahnräder und -wellen eine grundsätzlich andere Anforderung an das Öl stellt als die Schmierung z. B. der Kurbelwelle im Motor. Während sich an den beweglichen und rotierenden Motorteilen ein haftender Schmierfilm aufbauen kann, wird dieser von den aufeinander mahlenden Zahnrädern im Getriebe förmlich zerquetscht und aus den Zahnflanken herausgedrückt. Dieser extremen Druckbelastung wird mit Hochdruck-Additiven begegnet, die im Motoröl für Autos nicht oder nur in geringen Mengen enthalten sind.

Einige Motorprinzipien (z. B. Pumpe-Düse-Diesel-Direkteinspritzer oder Motoren ohne Ventilfedern wie z. B. Desmodromik) verlangen auch im Bereich des Ventiltriebs nach einer erhöhten Menge an Hochdruck-Additiven oder EP-Additiven. Dies wird durch die Motorenhersteller in ihren Freigaben berücksichtigt.

Dazu kommt, dass viele Motorräder über Nasskupplungen verfügen, die Kupplung also im Ölbad des Motoröls läuft. Solche Ölbadkupplungen vertragen keine Additive zur Reibwertminderung, die in vielen modernen PKW- und Leichtlaufölen enthalten sind. Während beim alltäglich benutzten Auto die Kraftstoffeinsparung im Vordergrund steht, ist es beim Motorrad doch eher wichtig, ein Motoröl einzusetzen, das hohen Drehzahlen und hohen Temperaturen gewachsen ist. Zumal die verwendeten Ölmengen im Motorradmotor vergleichsweise gering sind und die Temperaturspitzen im Betrieb schon deshalb höher liegen als beim Auto. Aus diesen Gründen darf in Motorrädern mit Ölbadkupplung und/oder integriertem Schaltgetriebe ausschließlich Motoröl eingesetzt werden, das vom Hersteller eindeutig als dafür geeignet eingestuft wird.

Traktor-Öl

Viele Traktoren (fast alle modernen Traktoren mit stufenlosen Getrieben) verwenden für Motor, Getriebe und Hydraulik unterschiedliche Ölkreisläufe, ähnlich wie beim Automobil. Die Anforderungen und Spezifikationen sind daher auch ähnlich. Vor allem Traktoren mit Lastschaltgetrieben und ältere Traktoren haben einen gemeinsamen Ölkreislauf für Getriebe, Hinterachse und die Hydraulik, bei denen nasse Lamellenkupplungen im Ölbad mitlaufen. Daraus ergeben sich spezielle Anforderungen, die mit Standardölen nicht erfüllt werden können. Bei solchen Maschinen wird meist ein Universalöl Super Tractor Oil Universal (STOU) verwendet, welches den Anforderungen von Achs-/Getriebeölen, (API GL4 mit Limited-Slip (LS) Zusätzen), Motoröl sowie denen eines Hydrauliköls gerecht werden. Bemerkenswert: Die Bestimmung der Reinheitsklassen nach ISO 4406, SAE 4059 ist mit diesem Öl nicht, bzw. nur sehr schwer möglich, da bei der klassischen Partikelzählung mittels Lichtquelle (Laser) und Photosensor leider auch die relativ großen Additive mitgezählt werden. Eine entsprechende Auswertung kann nur rechnerisch erfolgen.

Normen

ACEA

Die Nachfolgeorganisation der CCMC – der ACEA (Association des Constructeurs Européens d’Automobiles) – ist ein Interessenverband der europäischen Automobilindustrie. Seit Anfang der 1990er-Jahre werden dort Motorenölklassifikationen für europäische Fahrzeuge erarbeitet und herausgegeben, wobei die üblichen US-Prüfläufe und die API-Klassifikationen mit berücksichtigt werden, um eine Übertragbarkeit der Ergebnisse zu gewährleisten.

  • ACEA Klasse A – Motorenöl für Ottomotoren in PKW
  • ACEA Klasse B – Motorenöl für Dieselmotoren in PKW und leichten Nutzfahrzeugen
  • ACEA Klasse C – Motorenöl für Otto- und Dieselmotoren mit neuen Abgasnachbehandlungssystemen (z.B. Dieselpartikelfilter)
  • ACEA Klasse E – Motorenöl für Dieselmotoren in Nutzfahrzeugen und LKW

Die Klasse wird ergänzt um einen Zahlencode. Beispiel: ein A1/B1-04 wäre ein Motorenöl für Ottomotoren (Klasse A) und Dieselmotoren (Klasse B) in Standardqualität (1), geprüft nach der im Jahre 2004 (-04) ausgegebenen ACEA-Klassifikation.

Achtung: Aus dem Zahlenwert kann keineswegs auf die Wertigkeit des Öles geschlossen werden. Zwar ist ein A3- oder B3-klassifiziertes Öl hochwertiger als ein A1- oder B1-Öl. Ein A1-, B1- oder auch C1-Öl ist ein Öl mit einer abgesenkten HTHS-Viskosität. Aufgrund der damit verringerten Reibung erzielt man eine Kraftstoffersparnis von ca. 2,5 % gegenüber einem 15W-40. Es ist nicht richtig, dass ein X3 deshalb höherwertig ist, jedoch verbrennt ein Motoröl der Klasse C1 rückstandsärmer als ein Motoröl der Klasse C3 – würde hier ein C3- anstelle des vorgeschriebenen C1-Öles verwendet, könnte sich der Partikelfilter zusetzen.

Die ehemaligen CCMC-Klassifikationen (CCMC D, CCMC G, CCMC PD etc.) sind ausgelaufen und werden nicht mehr geprüft.

API

Das American Petroleum Institute (API) ist der größte Interessenverband der US-amerikanischen Öl- und Gasindustrie. Seit den 1940er-Jahren erarbeitet man dort technische Standards und gibt technische Richtlinien heraus. Unter anderem eben auch für Motoröl.

  • API – S(Service oder Spark-Plug ignition = Kerzenzündung): Für Ottomotoren in PKW, gültige Normen sind derzeit API – SJ und API – SL. API – SM ist seit 2007 auf dem Markt, um den gestiegenen Anforderungen an Leichtlauföle und Abgasnormen Rechnung zu tragen.
  • API – C(Commercial oder Combustion ignition = Kompressionzünder = Selbstzünder): für Dieselmotoren in Nutzfahrzeugen und LKW, gültige Normen sind derzeit API – CF und API – CI-4 für Viertakt-Dieselmotoren sowie API – CF-2 für Zweitakt-Dieselmotoren.
  • API - GL = Getriebeöl

Alle älteren Buchstaben- bzw. Zahlencodes sind nicht mehr gültig. Trotzdem werden sie für spezielle Motoröle weiterhin verwendet und ausgewiesen, so z.B. bei Motorölen für Oldtimer und Veteranenfahrzeuge.

Dieselmotoren in PKW kommen in den USA kaum vor. Daher gibt es dort keine speziellen Prüfnormen für deren Motoröl.

ILSAC zusammen mit JAMA und anderen

Motoröle nach Spezifikation der ILSAC (International Lubricant Standardization and Approval Committee), JAMA (Japan Automobile Manufacturers Association) und anderen sind in Asien üblich.

  • ILSAC GF 1 entspricht in etwa API – SH
  • ILSAC GF 2 entspricht in etwa API – SJ
  • ILSAC GF 3 entspricht in etwa API – SL
  • ILSAC GF 4 entspricht in etwa API – SM

JASO

Diese japanische Organisation JASO (Japanese Automotive Standards Organization) gibt ebenfalls eigene Öl-Spezifikationen heraus. Wichtig sind die JASO-Spezifikationen für Zweitaktöle und die JASO-Spezifikation T 903 aus 1999. In dieser werden – aufbauend auf den API/ACEA-Spezifikationen – bestimmte Anforderungen für Otto-Viertakt-Motorradmotoren geprüft. Alle nach JASO T 903 geprüften Motorradöle müssen spezielle Schmierstoffeigenschaften erfüllen, die für Motorradmotoren mit integriertem Getriebe wichtig sind. Besonderes Augenmerk legt diese Prüfung auf Schergefälle (HTHS-Viskosität), Scher-, Verdampfungs- und Viskositätsstabilität bei hohen Temperaturen. Darüber hinaus werden spezielle Reibwertanforderungen geprüft, um festzustellen, welches Öl für Ölbadkupplungen geeignet ist. Danach bezeichnet die Klasse

  • JASO MA Öle mit hohem Reibwert, die für Ölbadkupplungen empfohlen werden und
  • JASO MB Öle mit niedrigem Reibwert, die für Ölbadkupplungen eher nicht eingesetzt werden sollten.

ACEA zusammen mit Alliance, EMA und JAMA

Das Besondere an den Global-Spezifikationen der Association des Constructeurs Européens d’Automobiles (ACEA), Members of the Alliance of Automobile Manufacturers (Alliance), Engine Manufacturers Association (EMA) und Japan Automobile Manufacturers Association (JAMA) ist, dass die Prüfläufe parallel mit amerikanischen, asiatischen und europäischen Fahrzeugmotoren durchgeführt werden.

  • Global DLD 1, Global DLD 2 und Global DLD 3 sind Prüfnormen, die speziell für leichte Nutzfahrzeuge mit Dieselmotoren entwickelt wurden.
  • Global DHD 1 ist eine Prüfnorm, die speziell für schwere Nutzfahrzeuge mit Dieselmotoren entwickelt wurde.

Sondernormen der Fahrzeughersteller

Einige Fahrzeug-/Motorenhersteller haben eigene Spezifikationen veröffentlicht, die im Allgemeinen auf einer ACEA- oder API-Klassifikation basieren. Oft werden darin auch spezielle praktische Fahrversuche und Straßentests vorgeschrieben.

Auf dem deutschen Markt sind insbesondere die Hausnormen folgender Fahrzeughersteller von Bedeutung:

  • BMW
  • Ford
  • Mercedes-Benz
  • Opel
  • Porsche
  • VW (Audi, Seat, Skoda)

Mit der zunehmenden technischen Ausgereiftheit moderner Motoren haben sich auch die Ansprüche an Motorenöle und ihre Eigenschaften geändert. Der Einsatz einfacher Öle in neueren Fahrzeugen (oder umgekehrt moderner Öle in älteren Motoren) kann möglicherweise Probleme verursachen.

So brauchen moderne Filtersysteme wie Rußpartikelfilter spezielle, rückstandsfrei verbrennende Motoröle. Diese sind aber für viele ältere Motoren nicht geeignet, weil ihre Schmiereigenschaften dort nicht ausreichen. So ist eine neue VW-Norm zwar abwärtskompatibel angelegt – aber eben nicht generell: einige ältere Motoren mit Pumpe-Düse-Einspritztechnik werden explizit ausgenommen.

Ölverdünnung / Ölvermehrung

Wenn ein Dieselfahrzeug mit Rußfilter häufig im Kurzstreckenbetrieb fährt, tritt oft eine sog. Ölvermehrung (auch: Ölverdünnung) auf. Diese bleibt oft unentdeckt (u.a. deshalb, weil man heute seltener den Ölstand prüft als vor 20 oder 30 Jahren). Ursache dieser Vermehrung ist die Einspritzung einer Extra-Portion Kraftstoff. Diese soll die Abgastemperatur erhöhen; dies wiederum soll den Rußfilter reinigen (sog. Rußfilter-Regeneration). Dieser Vorgang bewirkt häufig (unerwünschte Nebenwirkung) eine "extreme Ölverdünnung" (ADAC)[3]; dies ist schlecht für den Motor, weil verdünntes Öl schlechter schmiert. "Auch zu viel Öl kann gefährliche Folgen haben." (ADAC) [4]

Der ADAC untersuchte dieses Phänomen 2010.[5]

Darauf basierend fordert er[6]:

  • "Die Fahrzeughersteller sind aufgerufen, Partikelfilter-Regenerationsverfahren weiter zu entwickeln, die auch im Kurzstreckenbetrieb keine Verkürzung der Ölwechselintervalle erforderlich machen und die volle Gebrauchsfähigkeit des Fahrzeuges ohne Nachteile sicherstellen"
  • "Die Fahrzeughersteller bzw. Vertragswerkstätten sollten ihren Kunden attraktive Ölwechselangebote – speziell für Diesel-Kurzstreckenfahrer – anbieten. Ölpreise von 25 bis über 30 Euro je Liter sind dafür nicht hinnehmbar"

Literatur

Christian Jentsch: Chemische Zusätze in Motorenölen, Chemie in unserer Zeit, 12. Jahrg. 1978, Nr. 2, S. 57-62, ISSN 0009-2851

Einzelnachweise

Weblinks

 Commons: Motor oil – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

cosmos-indirekt.de: News der letzten Tage