Müller-Rochow-Synthese

Erweiterte Suche

Die Müller-Rochow-Synthese ist ein Verfahren für die großtechnische Herstellung von Methylchlorsilanen, die im Mai 1940 fast gleichzeitig von dem US-amerikanischen Chemiker Eugene G. Rochow und dem deutschen Chemiker Richard Müller entwickelt wurde. Methylchlorsilane sind Zwischenprodukte bei der Herstellung von Silikonen. Zum Katalytischen Mechanismus der Reaktion gibt es verschiedene Vermutungen, aber keine allgemein akzeptierte Theorie.

Reaktionsgleichung

Skizze zur Müller-Rochow-Synthese
A) Kompressor
B) Verdampfer
C) Wirbelschichtreaktor
D) Kühlmantel
E) Zyklon
F) Silicium / Kupfer (Kat.)
G) Methylchlorid
H) Kondensator
I) Rohsilan
J) zur Destillation
K) Silicium / Kupfer-Staub
L) Wärmetauscher
M) Rückstand
N) Rückfluss Methylchlorid
$ \mathrm{2 \ CH_3Cl + Si \longrightarrow (CH_3)_2SiCl_2} $

Technische Durchführung

Das Silicium liegt pulverförmig mit einer Korngröße zwischen 50 und 500 µm vor. Als Katalysator dient Kupfer, welches elementar oder z. B. in Form von Kupferoxid eingesetzt wird. Als Promotoren wirken außerdem noch Zink, Zinn, Phosphor und andere Elemente. Die Reaktion findet etwa bei 300 °C und 0,5–2 bar(ü) statt.

In einem Wirbelschichtreaktor wird die Pulvermischung von unten mit Chlormethan durchströmt. Dieser Reaktortyp hat den Vorteil, dass die freiwerdende Wärme der exothermen Reaktion gut abgeführt werden kann. Nach dem Reaktor können die entstanden Methylchlorsilane von nicht verbrauchtem Chlormethan in einem Kondensator abgetrennt werden.

Die Silanmischung enthält das Hauptprodukt Dimethyldichlorsilan (in Konzentrationen von 70–90 %) aber auch Methyltrichlorsilan, Trimethylchlorsilan, Dimethyltetrachlordisilan und andere Silane. Diese müssen durch Rektifikation voneinander getrennt werden.

Weiterverarbeitung der Silane

Durch Hydrolyse der Chlormethylsilane bilden sich Silanole, diese kondensieren zu kurzen Ketten und Zyklen. Außerdem wird Chlorwasserstoff freigesetzt der unter anderem für die Synthese von neuem Methylchlorid eingesetzt werden kann. Durch weitere Polymerisation können die verschiedensten Silikonverbindungen hergestellt werden.

Hydrolyse:

$ \mathrm{(CH_3)_2SiCl_2 + 2 \ H_2O \longrightarrow (CH_3)_2Si(OH)_2 + 2 \ HCl} $

Kondensation:

$ \mathrm{n \ (CH_3)_2Si(OH)_2 \longrightarrow [-O{-}Si(CH_3)_2-]_n + n \ H_2O} $

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.01.2022
Satelliten | Raumfahrt | Astrophysik
James Webb Weltraumteleskop am Ziel
Die Wissenschaft kann möglicherweise bald erforschen, wie das Universum seinen Anfang nahm, denn das neue Weltraumteleskop James Webb hat seine Endposition erreicht.
17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.